Center for Plant Conservation Best Reintroduction Practice Guidelines

Chapter - January 2012

4 authors, including:

Joyce Maschinski
San Diego Zoo
63 PUBLICATIONS  1,867 CITATIONS

Matthew A Albrecht
Missouri Botanical Garden
28 PUBLICATIONS  310 CITATIONS

All content following this page was uploaded by Matthew A Albrecht on 19 October 2016.

The user has requested enhancement of the downloaded file.
The ultimate goal of rare plant conservation is to ensure that unique taxa experience continued evolution in a natural context. Over the past 20 years conservation officers working with the Center for Plant Conservation (CPC) have conducted plant reintroductions of many species in many habitats. In this appendix we provide our CPC Best Reintroduction Practice Guidelines, which refine reintroduction planning based on a review of past protocols, the experience of CPC practitioners, findings presented in this volume, and comments from conference attendees. The science and practice of rare plant reintroduction are expanding, and these guidelines represent the state of the art.

Our goal is to provide a quick reference for practitioners to use when planning and executing rare plant reintroductions (fig. A1.1). The term reintroduction in this appendix implies any attempt to introduce propagules to an unoccupied patch, including augmentations, introductions, and translocations. Managed relocations would require following these same guidelines in addition to the points presented by Haskins and Keel (this volume) and the modeling, interdisciplinary, multiagency, and potentially international collaborations cautioned by Kennedy and colleagues (this volume). The sections are intended to help practitioners do the following: justify the decision to conduct a reintroduction; prepare the reintroduction design with legal, funding, species biology, horticulture, and recipient site considerations in mind; implement the reintroduction; conduct project aftercare; and design monitoring to document long-term establishment of the rare population. All phases of the reintroduction process should include opportunities for public involvement. In addition, we suggest a template to use for documenting all aspects of the reintroduction that can be found on the North Carolina Botanical Garden website (North Carolina Plant Conservation Program Scientific Committee 2005).
In comparison to previous guidelines, these offer suggestions based on the meta-analyses described in this volume. Thorough examinations of existing populations are recommended to help determine the trajectory of population growth and guide selection of recipient sites. When possible we advise linking the ecology to the demography of the species. In addition, we provide suggestions for improving the possibility of creating a sustainable population in a changing climate.

To support our recommended best practices, we reference appropriate sections of the text of this volume. Additional literature can be found in the chapters. For more in-depth details about some of the sections, we refer readers to previous publications with reintroduction guidelines: Restoring Diversity (Falk et al. 1996), IUCN Guidelines for Reintroductions (IUCN 1998a), The SER Primer on Eco-

---

**Figure A1.1.** Flow diagram of reintroduction justification, preparation, implementation, aftercare, and monitoring.
It is our hope that these guidelines will improve recovery of endangered species and will leave a lasting impression on all those who are concerned with saving biodiversity. We welcome feedback on the guidelines and encourage practitioners to report any reintroductions to the CPC International Reintroduction Registry. CPC practitioners throughout the United States can be contacted through the CPC national office (http://www.centerforplantconservation.org/ or cpc@mobot.org).

I. Justifying and Deciding Whether to Conduct a Reintroduction

We do not support or promote reintroduction as an alternative to in situ ecosystem protection. All those working in plant conservation firmly agree that the priority is to conserve species in situ and to preserve their wild populations in natural habitats in as many locations as possible. Reintroduction is never the first action to take for a critically endangered species, even when crisis is imminent. First steps for species in dire straits must be ex situ collection, threat control, and habitat management (Guerrant et al. 2004a; Bruegmann et al. 2008).

Before any reintroduction is conducted, thorough status surveys and careful review of rarity status and threats should be undertaken. Reintroduction should be considered only if habitat protection is not possible or if the taxon is critically imperiled and appropriate sites and propagule source materials are available. We recognize that in the very near future introductions may need to be used as a tool to mitigate the impacts of climate change, because some in situ rare plant populations will be unsustainable in their current historical ranges.

To determine whether a species should be considered for reintroduction, it should meet the criteria described in the checklist box (box A1.1). If the species does not meet these criteria, a reintroduction should not be attempted at this time. If conditions change in the future, a second evaluation could be done. For some taxa, it may never be appropriate to conduct reintroductions. For others, changed conditions and improved horticultural, genetic, and ecological knowledge may make it feasible to conduct a reintroduction in the future.

1. Document the species’ status and distribution.

- Conduct surveys, create maps, and obtain population distribution information.
- Assess habitat-specific population information (Knight, this volume). In each population, count the number or estimate the percentage of
**Box A1.1. Justification for Reintroduction**

A reintroduction may be justified if:

- Species is extinct in the wild OR
- The distribution of the species is known and there are few, small, and declining populations; AND
- Alternative management options have been considered and conducted yet have been judged to be inadequate for long-term conservation of the species; AND
- Threats have been identified; AND
- Threats from habitat destruction, invasive species, land conversion and/or climate change are imminent and are uncontrollable. Species has high risk of extinction if only managed in situ.

If the species meets any one of the following criteria, then do not proceed with reintroduction. Consider ex situ conservation practices (Guerrant et al. 2004b). If the unmet criterion is resolved in future, then reevaluate.

- Reintroduction will undermine the imperative to protect existing sites.
- Previous tests indicate that it has not been possible to propagate plants or germinate seeds.
- High-quality, diverse source material is not available.
- Existing threats have not been minimized or managed.
- The reintroduced species may potentially negatively affect species in the recipient site via competition, hybridization, or contamination.
- There is evidence that the reintroduced taxon would harm other threatened and endangered species or conflict with their management.
- The reintroduction is not supported legally, administratively, or socially.
- Suitable habitat is not available or not understood.

**Note**

- Reproductive, juvenile, and seedling stages and, if possible, measure growth and reproduction.
- Note abiotic and biotic conditions in occupied patches. Whenever possible, quantify these factors (e.g., near adults and seedlings, record the canopy cover, associated species, plant density, soil moisture, light, and other factors).
2. **Ascertain threats and, when possible, take action to remove, control, or manage them.**

- Note specific abiotic and biotic factors that may be causing the population decline. Realize that threats may be direct or indirect and will be best observed over time (Dalrymple et al., this volume).
- If stochastic processes (e.g., wildfires, storms, or random events) have occurred and have decreased the number of individuals in the population, we advise augmenting the population.

3. **Engage land managers in discussion about options for the species conservation.**

- Attempt or consider all feasible alternative management options before considering reintroduction.
- Ensure that the population will have long-term protection and management (e.g., invasive species removal, controlled burns).

4. **If you cannot justify a reintroduction, do not proceed. Use other conservation options.**

5. **Consider whether your reintroduction will do any harm to the recipient community or to existing wild populations. If so, consider alternative conservation strategies.**

- Determine whether the potential collateral impacts of the species in the recipient site are negligible. Is there a threat of hybridization, invasion, or contamination?
- The reintroduction should not undermine the imperative to protect existing populations and their habitats.

6. **Determine that the reintroduction is feasible legally, logistically, and socially.**

- Laws governing rare species protection vary by location and jurisdiction; therefore, it is essential to discuss any plans for a reintroduction with authorities.
- Determine whether the species has a legal document such as a recovery plan or a conservation action plan, wherein reintroduction has been identified as an important step for preserving the species.
• Hold public meetings to review reasons for the reintroduction and solicit support or involvement.
• Document that the recipient site landowner (public or private) is committed to protecting the reintroduced population.

II. Preparing the Reintroduction

Although it is impossible to say definitively, we believe that many failed reintroductions could have succeeded if appropriate preparation had been undertaken. Being prepared for a reintroduction requires a good plan coupled with large investments of time and resources. This demands commodities that are often in short supply in our rapidly changing world: patience and persistence. It may not be possible to know all of the factors we describe here, but the more that is known, the higher the likelihood of success, and practitioners should at least be aware of the gaps in their knowledge.

Reviewing your reintroduction plan by addressing the following questions will allow you to assess your degree of preparedness (box A1.2). Once knowledge gaps are identified, there is an opportunity to weigh whether there is adequate information to proceed. The risk of proceeding without the knowledge can be assessed along with the risk of taking no action and losing the species. We strongly recommend that reintroductions be conducted as experiments precisely designed to address these knowledge gaps. In this way, each reintroduction can not only help future reintroductions of the practitioner’s target species but also help others doing plant reintroductions around the world.

Previous CPC publications have addressed detailed preparations for reintroductions with regard to demography, genetics, and horticultural practice (Falk and Holsinger 1991; Falk et al. 1996; Guerrant 1996a). Specific guidance for ex situ collection and management is essential preparation for reintroductions (see Guerrant et al. 2004a). Our aim here is to provide guidance for establishing sustainable populations in the wild where they may have opportunities for adaptation, evolution, and interactions within a natural ecosystem. Although it is necessary to describe the steps of the plan sequentially, often several steps are conducted simultaneously.

The Plan

7. **Develop a reintroduction plan. Whenever possible, design the reintroduction as an experiment and seek peer review.**

• Identify the project leader and key collaborators, who will be responsible for planning, supporting, implementing, site management, monitoring, and reporting findings.
• Identify areas of expertise needed to execute the reintroduction. If they are not represented in the collaborative group, then seek outside experts to join the team. For example, enlist the help of a scientist with experience in experimental design and statistical analysis to ensure that you have adequate replication to answer your research question. Consider addressing theoretical questions (box A1.3).

• Plan the reintroduction based on the best scientific information available. Rely on peers to review your reintroduction plan and provide feedback and
### Box A1.3. Questions to Consider When Designing Reintroduction Experiments

- What additional knowledge is needed about the species’ biology or other factors?
- What is the question being asked? Does your experimental design answer the question?
- How much replication is needed for adequate statistical power? How will the study be analyzed?
- Who will conduct the data analyses?
- Have you considered testing aspects of ecological theory, such as founder events, small population dynamics, establishment phase competition, dispersal and disturbance ecology, succession, metapopulation dynamics, patch dynamics on population persistence, resilience, and stability over time?
- Using the reintroduced population as a cohort, will you examine natural variation in survival, mortality, and recruitment and tie these to environmental factors?
- Will the reintroduction test key habitat gradients of light, moisture, elevation, or temperature?
- Will the underlying environmental drivers of λ be measured (Knight, this volume)?
- Will genetic factors be part of the experimental design? If so, how will they be analyzed?
- Will the reintroduction further our knowledge of key principles related to rare species’ ability to cope with climate change?
- Are you testing factors within a single site or across multiple sites?
- Has a monitoring plan been developed? How long will monitoring be conducted? Have you considered an adaptive monitoring plan? What will the duration of the experiment be?
- Have you developed a clear unambiguous datasheet to track reintroduced plant growth, reproduction, and survival? If the monitoring persists for decades, will your successors be able to interpret the data you have collected?
- Will the data be housed within your institution or elsewhere so that your successors will able to use it?
- How will the plants be mapped and marked or numbered?
- If plants are susceptible to herbivory, will their response be included in the design, or should the plants be protected?

*Sources: Falk et al. (1996); Vallee et al. (2004).*
alternative points of view. Rely on the global conservation community to assist you (see suggested reviewers in box A1.4).

- Train and carefully manage all personnel and volunteers who are involved.
- Define goals of reintroduction related to the recovery of the species. Set objectives.
- Develop methods, select which plant and population attributes will be measured, and determine monitoring protocol, frequency, and duration.

**The Law, the Land, and Funding**

8. **Obtain legal permission to conduct the reintroduction.**

- In some locations you may be required to obtain one or many permits before conducting a reintroduction (e.g., from the land owner or manager and local, regional, and national authorities). A reintroduction plan is often required for permit acquisition.
- Note the expiration date of all permits involved. Also note the requirements of permits, such as periodic reports or updates to the permitting agency.
• If the reintroduction is done as mitigation, it is critical that all preliminary planning steps be taken within legal parameters. (See Falk et al. 1996 for extensive discussion of mitigation.)

9. Ensure that landowners and managers are supportive of the project and can account for possible changes in the future.

• Discuss the long-term support and management of the recipient habitat with land managers.
• Develop a written agreement outlining who will be responsible for what action and any special protocols that need to be followed by parties working on the site.
• Set a schedule to meet periodically with the recovery team to assess the species’ condition and the status of the reintroduction.
• If future changes warrant intervention, determine a process for evaluating impacts on the reintroduced species. For some agencies, it may be necessary to develop a protocol or decision tree to trigger management action.
• Develop a mechanism for handling any conflicts that may arise (e.g., management for one species is detrimental to another species).

10. Secure adequate funding to support the project.

• Ideally, funding should be garnered for implementation and management for several years, if not decades, after the installation. At the very least, parties proposing to reintroduce a species should be committed to seek long-term funding support for the project. Committed partners who are willing to provide in-kind services or volunteer citizens who are willing to monitor the reintroduction will help make this step feasible.
• Determining the outcome of a reintroduction takes much more time than we thought. Expect to devote more than 10 years to monitoring to determine whether a population is sustainable (Monks et al., this volume).

Species Biology

The design of your reintroduction will benefit from knowing the biology and ecology of your taxon. We advise gathering information from the literature on your target taxon and closely related congeners. If there are gaps in your knowledge, use the reintroduction as an opportunity to learn more about the species and its ecology. See documentation section (p. 306).
11. **Know the species’ biology and ecology.**

- Knowing the mating system will determine whether source material should come from a single population or from mixed populations. For example, because remnant populations lacked compatible alleles for successful reproduction, reintroductions done with Florida ziziphus required carefully selecting compatible individuals from more than one location to achieve reproductive success (Weekley et al. 1999, 2002). In contrast, the facultatively autogamous *Schiedea obovata* requires keeping all outplantings separate (Kawelo et al., this volume).
- Because some taxa need symbionts to germinate or grow (Ogura-Tsujita and Yukawa 2008; Janes 2009; Haskins and Pence, this volume), knowing whether there are obligate mutualists will influence reintroduction success. Attempts to germinate or grow such species without their obligate mutualists will fail.
- If a species is dioecious, the spatial design of plantings should place male and female plants in close proximity (e.g., *Zanthoxylum coriaceum* in Maschinski et al. 2010).
- Species or conditions that may require special techniques for growing and implementing a reintroduction include edaphic endemics, species with specialist pollinators, and species that need symbionts for germination and growth.

**Genetics**

Ideally, the genetic composition of the reintroduced material is a balance between representing the local gene pool and creating a new, genetically diverse population. Reviewing your current knowledge of wild population genetics will facilitate decisions about appropriate locations for collecting source material, confirming whether hybridization may be a potential problem, or confirming the species taxonomy (Falk and Holsinger 1991; Falk et al. 1996; Neale, this volume; see boxes A1.3 and A1.5). For example, you may want to pursue genetic studies before your reintroduction if you suspect there are hybridization problems, if the morphology of the species looks different in different locations, if one or more populations of the species has distinct ecology from the majority of populations, or if it is difficult to distinguish this species from a congener. Using genetically heterogeneous founders will improve the ability of propagules to cope with varying environmental conditions (Falk et al. 1996; Guerrant et al. 2004a; Neale, this volume). Theoretically, high levels of genetic diversity will equip the new population with the adaptive potential needed to withstand stochastic and deterministic
events, including climate change, and can defend against potential genetic pitfalls of small populations such as founder effects and inbreeding depression.

Working with local geneticists at universities or government facilities to do the genetic studies may be necessary. Adequate funding must be garnered for proper genetic work. But also be aware that there are alternatives to genetic studies. These include hand pollination studies, common garden experiments, and reciprocal transplant studies. Each has advantages and disadvantages.

12. **Ascertain whether genetic studies are needed before conducting the reintroduction and, if possible, conduct studies to measure genetic structure of the focal species (Neale, this volume).**

- A genetic assessment of wild populations is advised before a reintroduction if the species meets any of the following criteria (S. Wagenius, personal communication).
  - The population has fewer than fifty individuals flowering and setting fruit.
  - The species has highly fragmented and isolated populations.
  - No pollinators are present.
No viable seed is being set.
There are high levels of herbivory, especially on flowers, seeds, and fruits.
The morphology of the species looks different in different locations.
One or more populations of the species have distinct ecology from the majority of populations.
It is difficult to distinguish this species from a congener.
There is recent disagreement about the taxonomy, and a reintroduction may create the undesired opportunity for hybridization.
• In the absence of genetic data, it is valuable to use information on species life history traits, such as habit and breeding system, to inform reintroduction decisions (Neale, this volume).

**Source Material and Horticulture**

The source material used for any reintroduction may determine its fate. To give the new population a chance at success and a buffer against future stochastic or catastrophic events, it is important to use plants that are genetically diverse and vigorous.

13. **Select appropriate source material.**

• Collect source material from a location that has similar climatic and environmental conditions to the restoration site(s).
• Minimize artificial selection during seed increases or augmentation of natural populations by resisting the temptation to use abundantly available, vigorously growing maternal lines that may skew the diversity of the population, but rather attempt to maintain even family line representation for a reintroduction (Guerrant et al. 2004a; McKay et al. 2005).
• Traditionally it is recommended to use a single source unless adequate information is available about mating system, dispersal, and genetic structure to justify mixing source material. Justifications for mixing source material include a lack of concern about disrupting local adaptation and evidence of inbreeding depression (Dalrymple et al., Neale, this volume).
• Consider the genetics of the reintroduced population in the context of the wild populations (box A1.6). For example, if the species is an obligate outcrosser and is locally adapted to a site, then breeding with natural populations may lead to outbreeding depression (Neale, this volume).
Box A1.6. Questions to Consider about the Genetics of Source Material

_____ From which wild population(s) should the material be collected for use in the reintroduction?
_____ What is the basis for collecting source material from a particular location?
_____ How will the source material be sampled?
_____ What is the genetic composition of the reintroduced material?
_____ Should material come from an ex situ source, only one wild source population, or mixed population sources?

14. Use ex situ source material before collecting new material from the wild unless the ex situ propagules you have available are not genetically diverse or there is a more appropriate wild source population that can withstand collection (Guerrant et al. 2004a).

- Ex situ samples are not immortal, and they degrade over time. Consider using ex situ material first, and then replenish ex situ stock.
- As a precaution favoring wild population integrity, we recommend using ex situ propagules despite some evidence that wild-sourced propagules tended to achieve higher levels of recruitment than ex situ propagules (Dalrymple et al., this volume). The comparative advantage of wild-collected over ex situ propagules may be related to greater plant age or size of wild-collected propagules. For example, an introduction of wild source and ex situ propagules of *Amorpha herbacea* var. *crenulata* showed that the largest plants had greatest survival (Wendelberger et al. 2008). The propagule origin was a less critical factor influencing transplant survival than was plant size.
- Bulking up ex situ collections through vegetative reproduction is recommended if feasible.
- If ex situ material is not available, collect no more than 10% of seed produced in any year from wild populations to avoid harm to the wild populations with more than fifty plants. Collect from all individuals within the population if there are fifty or fewer plants. Capturing broad genetic diversity may require collecting in different years and across the range of the fruiting season. See Guerrant et al. (2004a) for specific guidance on ex situ collection and management.
15. For long-lived species, reintroduce plants of varying sizes and life stages to account for variable success of stages in different microsites (Albrecht and Maschinski, this volume).

- The key is to provide heterogeneity. For example, use juveniles and reproductive plants in your reintroduction. Sometimes the two will have different microsite needs. Using different-stage plants will result in a more diverse population structure in the present and future and will increase your probability of finding the optimal conditions for the whole population to grow.

16. Use large, mature founders to increase the likelihood of establishing a persistent population (Guerrant et al. 2004a; Albrecht and Maschinski, this volume); use whole plants rather than seeds unless there are compelling circumstances (e.g., rock outcrop habitats) where seeds are necessary.

- Grow plants as large as is feasible to manage for transport to the reintroduction site and planting.
- Develop a demographic model for the species to determine the optimum founder plant and population size (Knight, this volume).
- To maximize the number of plants that will be available for the reintroduction, particularly when few seeds are available, we recommend germinating seeds under controlled nursery conditions and transplanting whole plants to the reintroduction site (Albrecht and Maschinski, this volume). A sample of 100 seeds may yield 95 plants if germinated in a greenhouse, whereas only a single seedling may emerge in the field.
- When seeds are the only option (e.g., annuals) we recommend using an experimental protocol that involves irrigation in the field until seeds germinate and become established, a practice often used with long-lived perennials. Also consider protecting seeds from herbivory or providing conditions that will decrease the probability of desiccation (e.g., Bainbridge 2007).

17. Confirm that the species can be successfully propagated and that an adequate amount of high-quality, healthy, genetically diverse source material is available.

- A critical step to accomplish before reintroduction is mastering the art of propagating large numbers of the species, acclimatizing them, and growing them ex situ. A declining species that cannot be propagated ex situ is simply not a good candidate for reintroduction. Acknowledge that you are not ready to proceed if you have not mastered this step.
18. Allow enough time to generate an adequate amount of source material before initiating the reintroduction, knowing this could take months or years.

19. Keep detailed documentation on all source material used to restore populations. This documentation should be linked to permanent plant labels or ID tags attached to the reintroduced plants. Store these data in multiple locations.

20. Do not use all your source material for the reintroduction.
   - Genetically diverse source material should be safely backed up in an ex situ location so that regardless of whether the reintroduction succeeds or fails, there is still germplasm conserved.

21. Use good horticultural practice.
   - Acclimate plants to novel conditions (Haskins and Pence, this volume). Transitions from culture medium to soil and from greenhouse to outdoors will require a period of adjustment to reduce the chance of shock. If using propagules that were derived from tissue culture, we recommend gradually decreasing humidity while subjecting cultures to ventilation or air exchanges before transfer to soil. Alternatively, methods could include increasing ambient CO₂, decreasing sugar levels in the cultures, or treating with growth regulators to increase stress tolerance.
   - Take phytosanitary precautions to ensure that diseases will not be transmitted.
   - Using native soils from the recipient site is advised for nursery production to provide necessary microbial mutualists. Native soils may need augmentation with sterile perlite or vermiculite to achieve consistency necessary for container growth. The possibility of transferring pathogens with native soil should be considered, and good nursery hygiene practices must be followed. If the use of native soil is impractical, then microbial inoculum can be purchased or self-cultured (Brundrett et al. 1996; Dumroese et al. 2009). Note that microbial additions involve translocating multiple species, and therefore all the considerations discussed in these guidelines must be considered for the microbes as well.
   - Remove weeds from pots containing reintroduction propagules.

Site Selection

A recipient site should be chosen with great care and intention. Several conditions influence a species’ ability to colonize a new site, including functional ecosystem
processes, appropriate associated species, and ongoing management to remove threats and maintain ecosystem health. Review what is known about a proposed recipient site (Box A1.7). Seek a recipient site with great similarity to the place where the rare species is thriving. Understanding the site history may help explain existing conditions. Although it is impossible to predict with certainty what a site will become in the future, as much as possible practitioners should try to imagine

| __ Have you researched the history of the recipient site? |
| __ Have you incorporated species-specific factors related to optimal population growth into the recipient site assessment? |
| __ Have you identified species-specific environmental and community factors in occupied and unoccupied patches? |
| __ Have you ranked several potential suitable recipient sites to determine the best place for the reintroduction to occur? |
| __ Is there still suitable habitat left within the species’ range? (See Falk et al. 1996 for discussion of range.) |
| __ Are recipient sites of sufficient quality and with sufficient long-term protection to ensure the long-term security of the reintroduced population? |
| __ Are threats absent or adequately managed at the site? |
| __ What were the previous threats that may have caused the species to become extirpated from site? |
| __ What is the potential for future threats? |
| __ Is current and future land use of the recipient site and surrounding sites compatible with sustainability of the reintroduced population? |
| __ Are potentially hybridizing congeners present at recipient site? Which ones? Are they present at nearby sites? Are they present within the target species’ range? |
| __ Is the recipient site within the species’ climate envelope now? Do models suggest that the location will be safely within the climate envelope in the future? |
| __ What site preparation is needed before the plants can be installed (e.g., canopy thinning, invasive removal)? Will habitat manipulation continue after reintroduction? |
| __ Does the species need habitat conditions that no longer exist on site (e.g., fire, periodic inundation)? Can those conditions be mimicked? |
the future conditions the reintroduced population will face. Ongoing management and threat abatement are essential for maintaining conditions conducive to population sustainability.

In addition, it is important to think about any recipient site in the context of the species’ whole distribution. Because corridors may facilitate migration and dispersal between patches, especially with the onset of climate change (Noss 2001), a reintroduced population can serve an important function of connecting existing populations by forming a stepping stone between patches or expanding the size of existing patches. Connecting fifteen or more patches will improve chances for the entire metapopulation capacity (see Hanski and Ovaskainen 2000).

22. **Choose a suitable recipient site.**

- Evaluate potential reintroduction sites using the recipient site assessment or other quantitative assessment (Maschinski et al. [chap. 7], this volume). Base your evaluation on the natural habitat where a population has positive (or at least stable) growth rate (Dalrymple et al., Knight, this volume).
- To choose between several potential sites, rank reintroduction sites incorporating logistics or ease of implementation, quality of habitat, and management influencing the species’ ability to persist at a site (table 7.1; Maschinski et al. [chap. 7], this volume).
- Consider landscape-level phenomena. Evaluating the landscape from the perspectives of topography, ecosystem dynamics, and patterns of possible restoration trajectories will help determine the locations with greatest likelihood of sustaining a reintroduced population (Maschinski et al. [chap. 7], this volume).
- To account for uncertainty, incorporate heterogeneity into the reintroduction plan. Use multiple sites and multiple microsites (even outside your expectations) to test heterogeneity of conditions needed for optimal growth for all life stages of a species (Dalrymple et al., Maschinski et al. [chap. 7], this volume).
- Because the fine-scale needs for individual plant growth and optimal population growth are often unknown, using microsite as an experimental factor is good practice. Measure abiotic conditions (e.g., soil, precipitation, temperature) and biotic conditions (e.g., predators, mutualists, invasive species) at the reintroduction site that are associated with plant performance and population growth (Knight, Maschinski et al. [chap. 7], this volume). Ensure that there are adequate areas for population expansion (e.g., microsites are available within the recipient site and adjacent suitable habitat is available outside of the recipient site).
• Realize that if environments conducive to positive population growth are rare or nonexistent, additional activities, beyond simply reintroducing propagules, will be necessary (Knight, Maschinski et al. [chap. 7], this volume).

23. **Note that using extant populations and their habitat conditions as reference points for reintroductions will not always be appropriate if the species does not have positive growth rate at these locations (Possley et al. 2009; Dalrymple et al., Knight, Maschinski et al. [chap. 7], this volume).**

• An experimental context is essential to determine factors necessary for positive population growth.
• Reference points may not be available within core habitat under climate change conditions (Dalrymple et al., this volume). Similarly, geographic distribution may not be a good reference for fundamental niche space. For this reason, known historic range may not necessarily be the only guide to assess optimal habitats for successful reintroduction (Maschinski et al. [chap. 7], this volume).

24. **Increase the probability of creating a sustainable population by choosing recipient sites that have connectivity and increase the probability of dispersal to additional locations (Maschinski et al. [chap. 7], this volume; box A1.8).**

• Recipient sites in close proximity to wild or reintroduced populations may have a higher probability of gene exchange.
• Recipient sites with adequate suitable habitat have a higher probability of providing space for population expansion.

*Population Biology: Present and Future Generations*

Guerrant (1996a, p. 194) suggested that the “founding population should be as large as possible, with the ceiling set primarily by practical and other strategic considerations.” With this in mind, it is important to introduce enough individuals (seeds or juveniles) to break through demographic and environmental stochasticity of low populations to achieve a viable population (Knight, this volume). A good reintroduction plan will address population biology questions (box A1.9).
25. Use at least fifty plants for a reintroduction (Albrecht and Maschinski, this volume).

- When working with perennial herbs and sites in highly competitive environments such as grasslands, founder population sizes will need to be larger than fifty.
- We recommend developing a demographic model for the species to determine the optimum founder size (see Knight, this volume).

<table>
<thead>
<tr>
<th>Box A1.8. Questions Related to Habitat or Landscape-Level Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ Does the recipient site contribute to natural patterns of heterogeneity in the species’ distribution?</td>
</tr>
<tr>
<td>_____ Have you considered habitat connectivity? Is healthy suitable habitat nearby that will allow the reintroduced population to expand in area and number of individuals? Is adjacent property suitable habitat? Is adjacent property protected?</td>
</tr>
<tr>
<td>_____ Are there metapopulation possibilities? Have you accounted for between-site factors as well as within-site factors? Is the site located close to extant populations or other reintroduced populations?</td>
</tr>
<tr>
<td>_____ What are the distances between the proposed reintroduction and nearby wild populations? What advantages or disadvantages do the nearby sites give the reintroduced population?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box A1.9. Questions Related to Population Biology Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ What founder population size will be used? (Albrecht and Maschinski, Knight, this volume)</td>
</tr>
<tr>
<td>_____ What size and stage structure of plants will be used?</td>
</tr>
<tr>
<td>_____ How will the founding population be spatially configured to favor demographic persistence and stability?</td>
</tr>
<tr>
<td>_____ What is known about population growth, recruitment, and survivorship in wild habitats, and what environmental or community factors are correlated with population growth rates?</td>
</tr>
<tr>
<td>_____ How will population growth, recruitment, and survivorship be monitored in the reintroduced population? And by whom?</td>
</tr>
</tbody>
</table>
26. **Seek or develop growing conditions with the intention of improving germination, establishment, and survival of next-generation seedlings** (Albrecht and Maschinski, this volume).

- Implementing techniques or manipulating site conditions, such as using nurse plants, drip irrigation, or sculpting microcatchments (Bainbridge 2007) to improve success of field germination and seedling establishment, is a critical part of creating a sustainable population. More attention should be paid to this step in the reintroduction process.

### III. Implementing the Reintroduction

To use our limited conservation resources to the fullest extent, all reintroductions should be viewed as opportunities to learn about the species, either through experimentation or through documented observation. Even when there is reasonably good information about the environmental attributes associated with the species and its occurrence, test plantings can show which microhabitat conditions are optimal for growth, survival, and long-term population growth (Maschinski et al. [chap. 7], this volume). Effective implementation entails considering logistics and design (box A1.10).

27. **Determine the time, materials, personnel, and logistics needed to implement the reintroduction.**

- Ensure that you have enough help to treat the site and install plants.
- This is a wonderful opportunity for student and citizen volunteers of all ages. Ensure that they are provided with adequate training, supervision, water, and snacks.

28. **If necessary, remove invasive species or thin canopy to improve site conditions for the reintroduced species.**

- Site preparation will take time before and after the reintroduction.
- Multiple treatments (e.g., irrigation, soil amendment) may be needed to ensure ideal conditions for reintroduced plants.

29. **Place plants in a spatial pattern that will promote effective pollination, seed production, and recruitment.**

- Plant density strongly influences variation in outcrossing (or selfing) among plants, so plant in a spatial pattern that will encourage appropriate breeding for your species (Monks et al., this volume).
• Planting individuals in small clusters throughout the recipient area, instead of a few large clusters, may increase spread of the population (Reichard et al., this volume).

• Understanding a target species’ tolerance for competition and disturbance, as well as habitat composition and structure, can help inform spatial and temporal placement of any reintroduction (Maschinski et al. [chap. 7], this volume). For example, if the target species is not a good competitor, planting into open spaces with few other species present is advised.

30. **Use a system such as color coding to distinguish plants in different experimental treatments easily. Select durable, long-lasting tags for labeling plants and plots.**

• If you have a large number of plants and a large number of people helping with the installation of the reintroduction, it is important to be able to distinguish plants from different treatments. For example, if you are testing...
plants that received mycorrhizal fungal inoculum and those that did not, clearly mark plants before getting to the field and clearly mark the location at the site where plants of each group should be planted.

IV. Conduct Aftercare of the Reintroduction

After the reintroduction is installed, it will need additional care. Success cannot be assumed just because plants or seeds are in the ground. The first few weeks are often most crucial in ensuring that the species survives in its new home. Practitioners should take care to consider these activities in time and cost estimates (box A1.11).

31. Water plants and seeds until established.

32. Periodically remove weeds nearby until plants are well established.

33. Ongoing site management is important. Collaborators should review the status of the site periodically to ascertain whether further management is needed.

- Control overabundant herbivores. Cage plants, if necessary.
- Restore historical disturbance regimes such as fire.
- It may be necessary to control competing native and exotic vegetation over the long term, especially if fire cannot be restored to the recipient site.
- Periodically survey the site to detect unforeseen problems (e.g., trampling, theft, herbivory, pest insects, vandalism, maintenance personnel abuse of plants). Take appropriate action to protect the reintroduced population.

<table>
<thead>
<tr>
<th>Box A1.11. POST-PLANTING QUESTIONS TO CONSIDER (VALLEE ET AL. 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ What aftercare will be needed, and how frequently will plants need attention?</td>
</tr>
<tr>
<td>_____ What habitat management and threat abatement are needed?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>_____ Has a monitoring plan been prepared and reviewed?</td>
</tr>
<tr>
<td>_____ Are sufficient funds available for aftercare?</td>
</tr>
<tr>
<td>_____ Do permits cover aftercare activities?</td>
</tr>
</tbody>
</table>
V. Design Appropriate Monitoring Plans

A well-designed monitoring plan is an essential component of any reintroduction program. To ensure the long-term persistence of a species in the face of environmental change, a long-term monitoring plan is needed to evaluate how reintroduced populations respond to infrequent events (e.g., drought) and to detect changes in the population that might take years to express (e.g., inbreeding depression in long-lived perennials, replenishing of the soil seedbank). Our goal in this section is not to provide an exhaustive review of how to monitor plant populations but rather to provide standards for the minimum amount of information needed to evaluate the long-term fate of reintroduced populations. Although all monitoring plans must be tailored to individual projects in order to obtain relevant data, all reintroduction monitoring plans include basic components needed to provide information relevant to species’ biology and techniques for managing rare plant populations (table A1.1). A long-term monitoring strategy will depend on a number of factors, including the trajectory of population growth, the life history of the focal species, monitoring resources, and the goals of the experimental components of the project. See Elzinga and colleagues (1998) for more details.

34. Develop a monitoring plan.

• A well-designed monitoring plan with clear objectives provides information on the species’ biology and techniques for managing rare plant populations. It should be easily understood by your successors; record details as if you are writing for institutional memory.
• If any changes are made to the monitoring plan, then document changes in detail.

35. Gather demographic data on the reintroduced population unless it is not appropriate for the life history of the target species (Morris and Doak 2002; see #37).

• Determine the stages of your population and count them. Most commonly, this will be seedlings, juveniles, nonreproductive adults, and reproductive adults.
• We recommend measuring survival, growth, and reproduction on each plant, preferably over multiple generations (Monks et al., this volume).
• If you plan to develop and compare population viability analysis models for the reintroduced population and natural populations, then the frequency of monitoring will need to be at a rate that accurately charts movement of an individual from one life stage to another (table A1.1).
### Table A1.1

*List of actions essential to monitoring plans for reintroduced plant populations.*

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop clear monitoring objectives.</td>
<td>Take into account the life history of the focal species, propagule stages planted, and biological and project goals (Pavlik 1996).</td>
</tr>
<tr>
<td>2. Define sample units.</td>
<td>Use individuals or transplants for demographic monitoring or plot- or transect-based methods for monitoring demographic structure. All transplants and plots must be permanently marked and mapped, preferably with GPS.</td>
</tr>
<tr>
<td>3. Determine appropriate monitoring frequency.</td>
<td>Monitoring period should match key phenological phases (e.g., peak fruiting and flowering) and life history of the focal species.</td>
</tr>
<tr>
<td>4. Monitor vital rates.</td>
<td>Follow the fates (survival, growth, fecundity, and recruitment) of transplanted individuals and their progeny or quantitatively track abundance of stage classes (seedling, juvenile, nonreproductive adult, reproductive adult).</td>
</tr>
<tr>
<td>5. Evaluate fecundity.</td>
<td>Measure seed production by counting the number of fruits per plant and estimate the number of seeds per fruit through subsampling. Compare results to reference or natural populations.</td>
</tr>
<tr>
<td>6. Survey new habitat patches for dispersal and spread.</td>
<td>Search for seedlings at each census, both near and far from sample units. Add new recruits to demographic studies; subsample if recruitment densities are large. Conduct searches for the focal species in suitable habitat patches within and beyond the initial planting site. Establish new sample units to monitor the growth and development of new patches or populations.</td>
</tr>
<tr>
<td>7. Monitor wild reference populations.</td>
<td>Simultaneously monitor reintroduced and natural populations to gain insight into key factors that underlie restoration success. Natural populations should be monitored across several sites and during the same years to capture variation in vital rates for comparison to reintroduced populations.</td>
</tr>
<tr>
<td>9. Prepare backup plan to relocate lost sample units.</td>
<td>Document all sites and plots with GPS and supplement with precise directions that include compass directions and measured distance from permanent visible landmarks (Elzinga et al. 1998). Produce geographic information system layers and maps if possible.</td>
</tr>
<tr>
<td>10. Archive monitoring data and provide metadata.</td>
<td>Enter, store, and back up all monitoring data in digital files. A minimum of two copies of raw datasheets should be kept on paper file, preferably in separate locations. One copy should be accessible to take into the field during subsequent monitoring events. Metadata should be assembled during the project and continually updated.</td>
</tr>
</tbody>
</table>

*GPS = Global Positioning System.*
• Define the boundaries of your search area to determine dispersal of new recruits and survey these as needed. Realize that these boundaries may need to be expanded or changed over time.

36. When possible, monitor multiple wild reference populations to compare to the reintroduced population (Bell et al. 2003; Colas et al. 2008; Menges 2008).

• Reference populations will give context for spatial and temporal variation in the reintroduced population’s vital rates (table A1.1) and aid in identifying the vital rates that are driving population trends (Morris and Doak 2002).
• In augmentations, the fate of augmented individuals and naturally occurring ones should be distinguished in demographic or quantitative censuses whenever possible to determine whether transplants are performing differently from naturally occurring individuals in the population.

37. Adopt a monitoring strategy that is appropriate for the life history of your target species and the founding propagule used.

a. For long-lived perennial plants, monitoring plans will need to accommodate changes in population structure over time.

• Note when transplants transition into larger size classes and sexually reproduce.
• Tag new seedlings as they recruit into the population.
• Most perennial plants will need to be monitored each year to obtain annual vital rates, but some long-lived species (e.g., trees) with slow growth and low reproduction may need less frequent monitoring.
• Time monitoring visits with peak seasonal activity of fecundity and seed germination.
• Searches beyond the transplant plots or transects will need to be conducted to document dispersal, seedling recruitment, and metapopulation dynamics adequately.

b. For short-lived plants, such as annuals, whose populations are often spatially and temporally variable, seed will most often be used to found reintroduced populations (Albrecht and Maschinski, Dalrymple et al., this volume). We recommend sowing seed into permanently marked and mapped plots or transects.

• In annual species, dormancy and germination are often driven by climatic cues that vary from year to year, resulting in wide annual fluctuations in dis-
distribution and abundance. As subsequent generations disperse seed, restricting the census to the original sown plots would fail to capture local dispersal. It will be important to note which microsites are suitable for germination and survival.

- Regular counts of individuals within grids or belt transects that cover broad areas within the habitat may be needed to capture changes in the complete spatial distribution and abundance over the long term and to assess population trends effectively (Young et al. 2008).

c. The method used to monitor seeds will depend on the sample unit.

- When sample sizes are small, seeds can be tracked individually. In most cases, however, seeds are sown directly into plots and cohorts are followed.

d. If demographic monitoring of individuals is not possible, monitor stages or size classes that are most important in maintaining population growth.

- If the importance of the vital rates is known for your species, you can concentrate on the most important vital rate and note changes across years to understand population trends.
- If populations begin to decline, then monitoring individuals in all stage classes may be needed to understand mechanisms that are driving the decline and to determine what management actions are needed to reverse the decline.

e. When the target species has characteristics or traits such as clonal reproduction, seed or plant dormancy, or cryptic life history stages (e.g., orchid germinants), all of which make demographic monitoring of marked individuals difficult or impractical, we recommend doing census counts of all or key life history stages to detect population trends (Menges and Gordon 1996).

38. Monitor for at least 3 years and if possible for 10 years or more (Falk et al. 1996; Dalrymple et al., this volume).

- Long-term monitoring provides information necessary to evaluate how reintroduced populations respond to events (e.g., drought) that were infrequent or nonexistent during the early phase of population establishment. It can reveal genetic problems that might play out only after multiple generations (e.g., inbreeding). The importance of these data cannot be overemphasized.
- To develop population viability models and predict population trajectories, a minimum of 3 years of monitoring data is needed. To predict long-term trends (10–100 years) and determine whether a reintroduced population is
potentially self-sustaining under current environmental conditions, extended periods of monitoring are necessary.

• Enlist the help of volunteers to accomplish long-term monitoring (Maschinski et al. [chap. 4], this volume). When possible, include land managers in the monitoring process to foster a close connection between project members and the reintroduced population.

39. It is safe to assume that some of the sample units will be lost over time. Use multiple permanent markers and map plants and plots with a Global Positioning System device to help prevent the loss of valuable data.

• Realize that over time, natural or anthropogenic disturbances can impede access to sites or complicate relocating sample units. Plots and transect boundaries or demographic markers may be lost due to fire, flood, downfalls, burial, vandalism, animal impacts, and so on.

• Losses can be mitigated with a good insurance plan, which can be used to reestablish or relocate the boundaries of sample units or tagged individuals when necessary. Whether through plot-based methods or monitoring of individuals, there are several ways to ensure the accurate relocation of lost plot markers, transects, and tagged individuals. See pages 190–191 in Elzinga and colleagues (1998) for more details.

40. Determine how success will be measured and have realistic goals.

• Identify and define short-, mid-, and long-term goals and determine how you will assess whether those goals have been met.

• Consider project success and biological success (Pavlik 1996).

• Consider population, genetic, and reproductive attributes as indicators of success (Monks et al., this volume).

41. As short-term goals are achieved in a reintroduction program, monitoring intensity may change from experimental to observational.

• For example, when reintroducing the perennial forb *Helenium virginicum* to sinkhole ponds in the Ozarks, Rimer and McCue (2005) initially set out to determine how planting position and maternal lines affected establishment rates of transplants over a 2-year period. Individuals of the species were
grown ex situ and transplanted in a replicated experimental design, and then the fates of transplants were followed demographically. After meeting the initial goals of the reintroduction, the populations grew rapidly due to vegetative reproduction and successful seedling recruitment, making it impractical to differentiate demographically between transplants and new recruits in subsequent censuses. Because the short-term goals of the experimental design were accomplished, the populations grew rapidly, and the species was capable of completing its life cycle in this location, the monitoring protocol switched to count estimates and surveys for new threats rather than full-scale demographic monitoring of individuals. Likewise, transitioning to observational monitoring may lead to less frequent data collection (e.g., annual rather than quarterly) than was needed during the more intense experimental stage.

42. **Analyze data in a timely fashion. Discuss your analyses with peers and statisticians.**

43. **Report results by publishing or publicizing via the popular media, newsletters, and websites. Enter data into relevant databases for global access.**

**Documentation**

Because documentation is an essential component of reintroduction (box A1.12), we encourage careful documentation so that the reintroduction project is justified, good decisions are made about preparedness before the reintroduction event, appropriate monitoring is implemented, the data are analyzed, and the project is published and made available to others in one form or another. These steps are important to represent the reintroduction accurately from a legal and scientific perspective (see Dalrymple et al., this volume). A documentation form is available on the North Carolina Botanical Garden website (North Carolina Plant Conservation Program Scientific Committee 2005).
**Box A1.12. Documentation Needed to Justify and Decide Whether to Conduct a Reintroduction**

- Survey and status updates are complete. Status includes degree of protection, threats, and management options for the extant populations.
- Specific information on the number of populations has been collated within the last 18 months.
- Counts or estimates of the number of individuals in each population have been done.
- The age structure of the populations is known.
- The relationship of populations in a metapopulation context is compiled.
- Surveys identifying suitable habitat are complete.
- Suitable recipient sites have been assessed and ranked.
- Long-term protection and management plans are documented for suitable recipient sites.
- Sufficient money is secured to conduct the reintroduction.
The reintroductions that were used in the meta-analyses reported by Albrecht and Maschinski, Dalrymple and colleagues, and Guerrant (this volume) are listed here. Included are the species epithet, family, country where the work was conducted, life history or life form, reintroduction type, year of first attempt, the authors who used this species in their meta-analysis, and the references. In some cases the reintroductions have been published in peer-reviewed literature, but many are reported either in gray literature or in the CPC International Reintroduction Registry (2009).
<table>
<thead>
<tr>
<th>Species Name</th>
<th>Family</th>
<th>Country</th>
<th>Life History or Form</th>
<th>Reintroduction Type</th>
<th>First Year</th>
<th>Dataset Identifier</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia aprica</td>
<td>Mimosaceae</td>
<td>Australia</td>
<td>WP, LLPP</td>
<td>Int OHR, Int WHR</td>
<td>1998</td>
<td>A, D, G</td>
<td>(CPCIRR: L. Monks; Monks 2002)</td>
</tr>
<tr>
<td>Acacia cochlocarpa ssp. cochlocarpa</td>
<td>Mimosaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int WHR</td>
<td>1999</td>
<td>A, G</td>
<td>(CPCIRR: L. Monks)</td>
</tr>
<tr>
<td>Acianthera saundersiana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Acianthera sonderana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Acomastylis rossii</td>
<td>Rosaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
</tr>
<tr>
<td>Acontium novboracense</td>
<td>Ranunculaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Aug</td>
<td>2009</td>
<td>G</td>
<td>(CPCIRR: V. Pence)</td>
</tr>
<tr>
<td>Aechmea calyculata</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Aechmea recurvata</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Agave arizonica</td>
<td>Agavaceae</td>
<td>USA</td>
<td>LLMP</td>
<td>Aug</td>
<td>1989</td>
<td>G</td>
<td>(CPCIRR: K. Rice; Ecker 1990; Gentry 1982)</td>
</tr>
<tr>
<td>Agrimonia incisa</td>
<td>Rosaceae</td>
<td>USA</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>1998</td>
<td>D</td>
<td>Glitzenstein et al. 2001</td>
</tr>
<tr>
<td>Aldrovanda vesiculosa</td>
<td>Droseraceae</td>
<td>Czech Republic</td>
<td>HP</td>
<td>Int WHR</td>
<td>1995</td>
<td>A, D, G</td>
<td>(CPCIRR: Adamec and Lev 1999); Adamec 2005</td>
</tr>
<tr>
<td>Antennaria flagellaris</td>
<td>Asteraceae</td>
<td>USA</td>
<td>HP</td>
<td>Trans</td>
<td>1983</td>
<td>D</td>
<td>Friedler and Laven 1996</td>
</tr>
<tr>
<td>Apium repens</td>
<td>Apiaceae</td>
<td>UK</td>
<td>HP</td>
<td>Int WHR</td>
<td>1996</td>
<td>D</td>
<td>McDonald and Lambrick 2006</td>
</tr>
<tr>
<td>Aquilegia canadensis</td>
<td>Ranunculaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Arendia racemosa</td>
<td>Araliaceae</td>
<td>USA</td>
<td>P</td>
<td>Int WHR</td>
<td>1994</td>
<td>D</td>
<td>(CPCIRR: V. Pence)</td>
</tr>
<tr>
<td>Arenaria cumberlandensis</td>
<td>Caryophyllaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>2005</td>
<td>G</td>
<td>(CPCIRR: V. Pence)</td>
</tr>
<tr>
<td>Argusia argentea</td>
<td>Boraginaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Reint</td>
<td>1999</td>
<td>D</td>
<td>McDonald 2005</td>
</tr>
<tr>
<td>Aristida beyrichiana</td>
<td>Poaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1993</td>
<td>D</td>
<td>Gilletstein et al. 2001</td>
</tr>
<tr>
<td>Aster linosyris</td>
<td>Asteraceae</td>
<td>UK</td>
<td>HP</td>
<td>NS</td>
<td>NS</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Astra galus bibullatus</td>
<td>Fabaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>2001</td>
<td>A, G</td>
<td>(CPCIRR: Albrecht and McCue 2010)</td>
</tr>
<tr>
<td>Astra galus cremnophylax var. cremnophylax</td>
<td>Fabaceae</td>
<td>USA</td>
<td>HP</td>
<td>Aug</td>
<td>1990</td>
<td>A, G</td>
<td>(CPCIRR: Maschinski and Rutman 1993)</td>
</tr>
<tr>
<td>Banksia anatona</td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int OHR</td>
<td>2007</td>
<td>A, G</td>
<td>CPCIRR: L. Monks</td>
</tr>
<tr>
<td>Banksia brownii</td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int OHR</td>
<td>2007</td>
<td>A, G</td>
<td>CPCIRR: L. Monks</td>
</tr>
<tr>
<td>Barbasella cogniauxiana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Bletia urbana</td>
<td>Orchidaceae</td>
<td>Mexico</td>
<td>HP</td>
<td>Int WHR</td>
<td>1986</td>
<td>A, D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Caladenia arenicola</td>
<td>Orchidaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int OHR</td>
<td>1996</td>
<td>D</td>
<td>Batty et al. 2006a</td>
</tr>
<tr>
<td>Caltha palustris</td>
<td>Ranunculaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR, Trans</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
</tr>
<tr>
<td>Campylocentrum burchellii</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Capanemia micromera</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Capanemia superflua</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Carex pyrenaeica</td>
<td>Cyperaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
</tr>
<tr>
<td>Carex rupestris</td>
<td>Cyperaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
</tr>
<tr>
<td>Carex vulpina</td>
<td>Cyperaceae</td>
<td>UK</td>
<td>HP</td>
<td>Aug</td>
<td>NS</td>
<td>D</td>
<td>Porley 2005</td>
</tr>
<tr>
<td>Species Name</td>
<td>Family</td>
<td>Country</td>
<td>Life History or Form</td>
<td>Reintroduction Type</td>
<td>First Year</td>
<td>Dataset Identifier</td>
<td>References</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Centaurea corymbosa</td>
<td>Asteraceae</td>
<td>France</td>
<td>HP</td>
<td>Int</td>
<td>1994</td>
<td>A</td>
<td>Kirchner et al. 2006</td>
</tr>
<tr>
<td>Cerastium nigrescens</td>
<td>Caryophyllaceae</td>
<td>UK</td>
<td>HP</td>
<td>Reint</td>
<td>1995</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Chamaesyce skottsbergii  var. skottsbergii</td>
<td>Euphorbiaceae</td>
<td>USA</td>
<td>WP</td>
<td>Int WHR</td>
<td>1979</td>
<td>D</td>
<td>Mehrhoff 1996</td>
</tr>
<tr>
<td>Chrysopsis floridana</td>
<td>Asteraceae</td>
<td>USA</td>
<td>SLPP</td>
<td>Int WHR</td>
<td>2008</td>
<td>G</td>
<td>(CPCIRR: C.L. Peterson)</td>
</tr>
<tr>
<td>Cimicifuga elata</td>
<td>Ranunculaceae</td>
<td>USA</td>
<td>HP</td>
<td>Aug</td>
<td>2001</td>
<td>G</td>
<td>(CPCIRR: Kaye 2001)</td>
</tr>
<tr>
<td>Cochlearia polonica</td>
<td>Brassicaceae</td>
<td>Poland</td>
<td>HP</td>
<td>Trans</td>
<td>1970</td>
<td>A</td>
<td>Cieslak et al. 2007</td>
</tr>
<tr>
<td>Conradina glabra</td>
<td>Lamiaceae</td>
<td>USA</td>
<td>WP</td>
<td>Int</td>
<td>1991</td>
<td>A, D, G</td>
<td>(CPCIRR: Gordon 1996a, 1996b)</td>
</tr>
<tr>
<td>Consolea corallicola</td>
<td>Cactaceae</td>
<td>USA</td>
<td>LLPP</td>
<td>Aug, Int WHR</td>
<td>1996</td>
<td>A, D, G</td>
<td>(CPCIRR: Maschinski et al. 2004b; Stiling et al. 2000)</td>
</tr>
<tr>
<td>Ctenium aromaticum</td>
<td>Poaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1993</td>
<td>D</td>
<td>Glitzenstein et al. 2001</td>
</tr>
<tr>
<td>Cyaena superba ssp. superba</td>
<td>Campanulaceae</td>
<td>USA</td>
<td>LLPP</td>
<td>Reint</td>
<td>1997</td>
<td>G</td>
<td>(CPCIRR: M. Kier; USFWS 2005)</td>
</tr>
<tr>
<td>Decalepis arayalpathra</td>
<td>Periploceae</td>
<td>India</td>
<td>HP</td>
<td>Reint</td>
<td>1998</td>
<td>D</td>
<td>Gangapradas et al. 2005</td>
</tr>
<tr>
<td>Delissea rhizidotperma</td>
<td>Campanulaceae</td>
<td>USA</td>
<td>ULPP</td>
<td>Reint</td>
<td>NS</td>
<td>G</td>
<td>(CPCIRR: D. Bender)</td>
</tr>
<tr>
<td>Deschampsia caepitosa</td>
<td>Poaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
</tr>
<tr>
<td>Diuris fragrantissima</td>
<td>Orchidaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int</td>
<td>2004</td>
<td>A</td>
<td>Smith et al. 2009</td>
</tr>
<tr>
<td>Diuris magnifica</td>
<td>Orchidaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int WHR</td>
<td>NS</td>
<td>D</td>
<td>Batty et al. 2006a</td>
</tr>
<tr>
<td>Diuris micrantha</td>
<td>Orchidaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int WHR</td>
<td>NS</td>
<td>D</td>
<td>Batty et al. 2006a</td>
</tr>
<tr>
<td>Species</td>
<td>Family</td>
<td>Origin</td>
<td>Distribution</td>
<td>Status</td>
<td>Year</td>
<td>Refs</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>----------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Dodonaea subglandulifera</td>
<td>Sapindaceae</td>
<td>Australia</td>
<td>LLPP Trans</td>
<td>1991</td>
<td>G</td>
<td>(CPCIRR: Jusaitis 1997; Jusaitis and Val 1997); Moritz and Bickerton 2010</td>
<td></td>
</tr>
<tr>
<td>Echinacea laevigata</td>
<td>Asteraceae</td>
<td>USA</td>
<td>HP, LLPP Int WHR</td>
<td>2000</td>
<td>A, D, G</td>
<td>Alley and Affolter 2004; (CPCIRR: Alley et al. 2008)</td>
<td></td>
</tr>
<tr>
<td>Echinacea tennesseensis</td>
<td>Asteraceae</td>
<td>USA</td>
<td>SLPP Reint NS</td>
<td>G</td>
<td></td>
<td>(CPCIRR: A. Bishop)</td>
<td></td>
</tr>
<tr>
<td>Erigeron parishii</td>
<td>Asteraceae</td>
<td>USA</td>
<td>HP Int WHR</td>
<td>1991</td>
<td>A, D, G</td>
<td>(CPCIRR: Mistretta and White 2001)</td>
<td></td>
</tr>
<tr>
<td>Erigonum ovalifolium var. vineum</td>
<td>Polygonaceae</td>
<td>USA</td>
<td>HP Int WHR</td>
<td>1991</td>
<td>A, D, G</td>
<td>(CPCIRR: Mistretta and White 2001)</td>
<td></td>
</tr>
<tr>
<td>Erysimum menziesii</td>
<td>Brassicaceae</td>
<td>USA</td>
<td>HP Int</td>
<td>1985</td>
<td>A</td>
<td>Ferreira and Smith 1987</td>
<td></td>
</tr>
<tr>
<td>Erystyes cotyledon</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
<td></td>
</tr>
<tr>
<td>Gomesa crispa</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
<td></td>
</tr>
<tr>
<td>Grevillea calliantha</td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP Int WHR</td>
<td>1997</td>
<td>D</td>
<td>Cochrane et al. 2000</td>
<td></td>
</tr>
<tr>
<td>Grevillea humifusa</td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP Int OHR</td>
<td>2003</td>
<td>A, G</td>
<td>(CPCIRR: L. Monks)</td>
<td></td>
</tr>
<tr>
<td>Haloragis eyreana</td>
<td>Haloragaceae</td>
<td>Australia</td>
<td>HP Trans NS</td>
<td>1994</td>
<td>D</td>
<td>(CPCIRR: M. Jusaitis)</td>
<td></td>
</tr>
<tr>
<td>Hedyotis caerulea</td>
<td>Rubiaceae</td>
<td>USA</td>
<td>HP Int WHR, Trans</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
<td></td>
</tr>
<tr>
<td>Helianthemum apenninum</td>
<td>Cistaceae</td>
<td>UK</td>
<td>P NS</td>
<td>1955</td>
<td>D</td>
<td>BSBI Introductions Database</td>
<td></td>
</tr>
<tr>
<td>Hibiscus waimeae ssp. hammerae</td>
<td>Malvaceae</td>
<td>USA</td>
<td>WP, LLPP Int</td>
<td>1997</td>
<td>A, G</td>
<td>(CPCIRR: D. Bender)</td>
<td></td>
</tr>
<tr>
<td>Hieracium attenuatifolium</td>
<td>Asteraceae</td>
<td>UK</td>
<td>P Aug</td>
<td>1999</td>
<td>D</td>
<td>BSBI Introductions Database</td>
<td></td>
</tr>
<tr>
<td>Species Name</td>
<td>Family</td>
<td>Country</td>
<td>Life History or Form</td>
<td>Reintroduction Type</td>
<td>First Year</td>
<td>Dataset Identifier</td>
<td>References</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><em>Humboldtia smithiana</em></td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td><em>Hutera rupestris</em></td>
<td>Brassicaceae</td>
<td>Spain</td>
<td>SLMP</td>
<td>NS</td>
<td>1976</td>
<td>D</td>
<td>Sainz-Ollero and Hernandez-Bermego 1979</td>
</tr>
<tr>
<td><em>Ipsea malabarica</em></td>
<td>Orchidaceae</td>
<td>India</td>
<td>HP</td>
<td>Int WHR, Reint</td>
<td>1995</td>
<td>A, D, G</td>
<td>CPCIRR: Gangaprasad et al. 1999; Martin 2003</td>
</tr>
<tr>
<td><em>Iris lacustris</em></td>
<td>Iridaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int</td>
<td>1989</td>
<td>A</td>
<td>Simonich and Morgan 1990</td>
</tr>
<tr>
<td><em>Isoetes louisianensis</em></td>
<td>Isoetaceae</td>
<td>USA</td>
<td>HP</td>
<td>Aug, Int WHR</td>
<td>2008</td>
<td>G</td>
<td>(CPCIRR: A. Tiller, P. Faulkner)</td>
</tr>
<tr>
<td><em>Ixiolaena specis nova</em></td>
<td>Asteraceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int</td>
<td>1993</td>
<td>A</td>
<td>Morgan 1999</td>
</tr>
<tr>
<td><em>Jacquemontia reclinata</em></td>
<td>Convolvulaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR, Reint</td>
<td>2001</td>
<td>A, G, D</td>
<td>(CPCIRR: Maschinski et al. 2003; Thornton and Wright 2003; Wright 2003a, 2003b; Wright and Fidelibus 2004; Maschinski et al. 2004b; Maschinski and Wright 2006; Maschinski et al. 2006, 2007)</td>
</tr>
<tr>
<td><em>Kobresia myosuroides</em></td>
<td>Cyperaceae</td>
<td>USA</td>
<td>HP, ULPP</td>
<td>Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
</tr>
<tr>
<td>echinata*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CPCIRR. L. Monks)</td>
</tr>
<tr>
<td><em>Lambertia farallii</em></td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int OHR</td>
<td>2007</td>
<td>A, G</td>
<td>(CPCIRR. L. Monks); Cochrane et al. 2000</td>
</tr>
<tr>
<td>*Lambertia orbifolia ssp.</td>
<td>Proteaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int WHR</td>
<td>1997</td>
<td>A, D, G</td>
<td></td>
</tr>
<tr>
<td>orbifolia*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CPCIRR: Posley et al. 2009)</td>
</tr>
<tr>
<td><em>Lantana canescens</em></td>
<td>Verbenaceae</td>
<td>USA</td>
<td>WP</td>
<td>Int WHR, Reint</td>
<td>2005</td>
<td>A, G</td>
<td>Ramp et al. 2006</td>
</tr>
<tr>
<td><em>Lepanthes eltoroensis</em></td>
<td>Orchidaceae</td>
<td>USA</td>
<td>HP</td>
<td>Trans</td>
<td>1999</td>
<td>A</td>
<td>Morgan 1999</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family</td>
<td>Country</td>
<td>Source</td>
<td>Introductions</td>
<td>Date</td>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Lepismium cruciforme</td>
<td>Cactaceae</td>
<td>Brazil</td>
<td>P</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Lepismium houlletianum</td>
<td>Cactaceae</td>
<td>Brazil</td>
<td>P</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Lepismium lumbricoides</td>
<td>Cactaceae</td>
<td>Brazil</td>
<td>P</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Lepismium warmingianum</td>
<td>Cactaceae</td>
<td>Brazil</td>
<td>P</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Lindera melissifolia</td>
<td>Lauraceae</td>
<td>USA</td>
<td>P</td>
<td>Int WHR</td>
<td>1990</td>
<td>D</td>
<td>Smith 2003</td>
</tr>
<tr>
<td>Linnaea borealis</td>
<td>Caprifoliaceae</td>
<td>UK</td>
<td>HP</td>
<td>Int WHR</td>
<td>1999</td>
<td>A, D</td>
<td>Kohn and Lusby 2004</td>
</tr>
<tr>
<td>Linum carteri var. carteri</td>
<td>Linaceae</td>
<td>USA</td>
<td>HP</td>
<td>Aug</td>
<td>2006</td>
<td>A, G</td>
<td>(CPCIRR: Maschinski et al. 2007)</td>
</tr>
<tr>
<td>Liparis loeselii</td>
<td>Orchidaceae</td>
<td>UK</td>
<td>HP</td>
<td>Int WHR, Trans</td>
<td>2005</td>
<td>D</td>
<td>Land, pers. comm.</td>
</tr>
<tr>
<td>Lobelia cardinalis</td>
<td>Campanulaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
</tr>
<tr>
<td>Lobelia unalas</td>
<td>Campanulaceae</td>
<td>UK</td>
<td>HP</td>
<td>NS</td>
<td>1968</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Lupinus sulphureus ssp. kineaidii</td>
<td>Fabaceae</td>
<td>USA</td>
<td>HP</td>
<td>NS</td>
<td>1993</td>
<td>A, G</td>
<td>(CPCIRR: Thorpe et al. 2008b)</td>
</tr>
<tr>
<td>Luronium natans</td>
<td>Alismataceae</td>
<td>UK</td>
<td>P</td>
<td>NS</td>
<td>1983</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Lysimachia asperulifolia</td>
<td>Primulaceae</td>
<td>USA</td>
<td>HP</td>
<td>Trans</td>
<td>2004</td>
<td>A, G</td>
<td>(CPCIRR: M. Kunz)</td>
</tr>
<tr>
<td>Maxillaria ferdinandiana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Maxillaria juergensii</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Maxillaria picta</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Melampyrum pratense</td>
<td>Scrophulariaceae</td>
<td>UK</td>
<td>Ann.</td>
<td>Trans, Int WHR</td>
<td>1985</td>
<td>D</td>
<td>Walter 2005</td>
</tr>
<tr>
<td>Myricaria laxifolia</td>
<td>Myricaceae</td>
<td>China</td>
<td>WP</td>
<td>Trans, Int WHR</td>
<td>2002</td>
<td>D</td>
<td>Chen et al. 2005</td>
</tr>
<tr>
<td>Nepeta ranjensis</td>
<td>Lamiaceae</td>
<td>Serbia</td>
<td>HP</td>
<td>Int WHR</td>
<td>2004</td>
<td>A, D</td>
<td>Misic et al. 2005</td>
</tr>
<tr>
<td>Oncidium flexuosum</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Oncidium macronix</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Oncidium riograndense</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Species Name</td>
<td>Family</td>
<td>Country</td>
<td>Life History or Form</td>
<td>Reintroduction Type</td>
<td>First Year</td>
<td>Dataset Identifier</td>
<td>References</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>Oryza rufipogon</td>
<td>Poaceae</td>
<td>China</td>
<td>HP</td>
<td>Reint</td>
<td>1993</td>
<td>D</td>
<td>Liu et al. 2004</td>
</tr>
<tr>
<td>Osmorhiza claytonii</td>
<td>Apiaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR, Trans</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
</tr>
<tr>
<td>Parnassia caroliniana</td>
<td>Saxifragaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int OHR</td>
<td>1995</td>
<td>D</td>
<td>Glitzenstein et al. 2001</td>
</tr>
<tr>
<td>Passiflora sexflora</td>
<td>Passifloraceae</td>
<td>USA</td>
<td>HP</td>
<td>Reint</td>
<td>2006</td>
<td>A, G</td>
<td>(CPCIRR: Possley et al. 2007; Possley and Maschinski 2009)</td>
</tr>
<tr>
<td>Pediocactus knowltonii</td>
<td>Cactaceae</td>
<td>USA</td>
<td>WP</td>
<td>Reint</td>
<td>1991</td>
<td>A, G</td>
<td>(CPCIRR: Cully 1996; Sivinski 2008)</td>
</tr>
<tr>
<td>Phebalium glandulosum</td>
<td>Rutaceae</td>
<td>Australia</td>
<td>LLPP</td>
<td>Trans</td>
<td>NS</td>
<td>G</td>
<td>(CPCIRR: Jusaitis 1996, 1997)</td>
</tr>
<tr>
<td>Phorodendron rubrum</td>
<td>Viscaceae</td>
<td>USA</td>
<td>WP</td>
<td>Aug</td>
<td>2001</td>
<td>A, G</td>
<td>(CPCIRR: J. Duquesnel)</td>
</tr>
<tr>
<td>Phymatidium delicatulum</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Pinus torreyana</td>
<td>Pinaceae</td>
<td>USA</td>
<td>WP</td>
<td>Reint</td>
<td>1994</td>
<td>D</td>
<td>Ledig 1996</td>
</tr>
<tr>
<td>Plantago sparsiflora</td>
<td>Plantaginaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1998</td>
<td>D</td>
<td>Glitzenstein et al. 2001</td>
</tr>
<tr>
<td>Platanthera leucophaea</td>
<td>Orchidaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>1981</td>
<td>A, G</td>
<td>(CPCIRR: T. Bittner); Packard 1991</td>
</tr>
<tr>
<td>Polystachya estrellensis</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Posidonia australis</td>
<td>Posidoniae</td>
<td>Australia</td>
<td>HP</td>
<td>Aug</td>
<td>1999</td>
<td>D</td>
<td>Meehan and West 2002</td>
</tr>
<tr>
<td>Primula vulgaris</td>
<td>Primulaceae</td>
<td>Poland</td>
<td>HP</td>
<td>Reint</td>
<td>1993</td>
<td>D</td>
<td>Kucharczyk and Teske 1996</td>
</tr>
<tr>
<td>Prostanthera eurybioides</td>
<td>Lamiaeae</td>
<td>Australia</td>
<td>WP</td>
<td>Int WHR</td>
<td>1996</td>
<td>A, D</td>
<td>Jusaitis 2005</td>
</tr>
<tr>
<td>Psoralea tenax</td>
<td>Fabaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Intro</td>
<td>1993</td>
<td>A</td>
<td>Morgan 1999</td>
</tr>
<tr>
<td>Pterostylis arenicola</td>
<td>Orchidaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Trans</td>
<td>1995</td>
<td>G</td>
<td>(CPCIRR: M. Jusaitis)</td>
</tr>
<tr>
<td>Ptilimnium nodosum</td>
<td>Apiaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>2006</td>
<td>A, G</td>
<td>CPCIRR: Box 2.1, this volume</td>
</tr>
<tr>
<td>Ptilotus erubescens</td>
<td>Amaranthaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Int</td>
<td>1993</td>
<td>A</td>
<td>Morgan 1999</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Family</td>
<td>Location</td>
<td>Distribution</td>
<td>Year</td>
<td>Growthsphere</td>
<td>CPCIRR Source</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>Ranunculus aestivalis</td>
<td>Ranunculaceae</td>
<td>USA</td>
<td>HP, Aug Int WHR</td>
<td>2007</td>
<td>G</td>
<td>(CPCIRR: Pence, Murray et al. 2008)</td>
<td></td>
</tr>
<tr>
<td>Rhus michauxii</td>
<td>Anacardiaceae</td>
<td>USA</td>
<td>WP, Reint Aug</td>
<td>1998</td>
<td>G</td>
<td>(CPCIRR: Braham et al. 2006)</td>
<td></td>
</tr>
<tr>
<td>Salvia pratensis</td>
<td>Lamiaceae</td>
<td>UK</td>
<td>HP, Aug</td>
<td>1999</td>
<td>D</td>
<td>BSBI Introductions Database</td>
<td></td>
</tr>
<tr>
<td>Sanguinaria canadensis</td>
<td>Papaveraceae</td>
<td>USA</td>
<td>HP, Int WHR, Trans</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
<td></td>
</tr>
<tr>
<td>Sarracenia flava</td>
<td>Sarraceniaceae</td>
<td>USA</td>
<td>HP, Int WHR</td>
<td>1998</td>
<td>D</td>
<td>Sheridan and Penick 2000</td>
<td></td>
</tr>
<tr>
<td>Saxifraga virginiensis</td>
<td>Saxifragaceae</td>
<td>USA</td>
<td>HP, Int WHR, Trans</td>
<td>1994</td>
<td>D</td>
<td>Drayton and Primack 2000</td>
<td></td>
</tr>
<tr>
<td>Schiedea spergulina var. leiopoda</td>
<td>Caryophyllaceae</td>
<td>USA</td>
<td>HP, Aug</td>
<td>2007</td>
<td>A, G</td>
<td>(CPCIRR: D. Bender)</td>
<td></td>
</tr>
<tr>
<td>Schwalbea americana</td>
<td>Scrophulariaceae</td>
<td>USA</td>
<td>HP, Aug</td>
<td>1995</td>
<td>A</td>
<td>Obee and Cartica 1997</td>
<td></td>
</tr>
<tr>
<td>Scleranthus perennis ssp. prostratus</td>
<td>Caryophyllaceae</td>
<td>UK</td>
<td>HP, Reint</td>
<td>1995</td>
<td>D</td>
<td>Leonard 2006a, 2006b</td>
<td></td>
</tr>
<tr>
<td>Senecio paludosus</td>
<td>Asteraceae</td>
<td>UK</td>
<td>HP, Int</td>
<td>1996</td>
<td>D</td>
<td>BSBI Introductions Database</td>
<td></td>
</tr>
<tr>
<td>Senecio macrocarpus</td>
<td>Asteraceae</td>
<td>Australia</td>
<td>HP, Int</td>
<td>1993</td>
<td>A</td>
<td>Morgan 1999</td>
<td></td>
</tr>
<tr>
<td>Sibbaldia procumbens</td>
<td>Rosaceae</td>
<td>USA</td>
<td>HP, ULPP, Trans</td>
<td>1973</td>
<td>G</td>
<td>(CPCIRR: May et al. 1982)</td>
<td></td>
</tr>
<tr>
<td>Silene regia</td>
<td>Caryophyllaceae</td>
<td>USA</td>
<td>SLMP, NS</td>
<td>2004</td>
<td>G</td>
<td>(CPCIRR: H. Alley)</td>
<td></td>
</tr>
<tr>
<td>Sorghastrum nutans</td>
<td>Poaceae</td>
<td>USA</td>
<td>HP, Int WHR</td>
<td>1997</td>
<td>D</td>
<td>Glitzenstein et al. 2001</td>
<td></td>
</tr>
<tr>
<td>Specklinia malmeana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP, Trans Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
<td></td>
</tr>
<tr>
<td>Species Name</td>
<td>Family</td>
<td>Country</td>
<td>Life History or Form</td>
<td>Reintroduction Type</td>
<td>First Year</td>
<td>Dataset Identifier</td>
<td>References</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Stephanoheria galhurensis</td>
<td>Asteraceae</td>
<td>USA</td>
<td>Ann.</td>
<td>Reint, Int OHR</td>
<td>1987</td>
<td>A, G</td>
<td></td>
</tr>
<tr>
<td>Symonanthus bancroftii</td>
<td>Solanaceae</td>
<td>Australia</td>
<td>HP</td>
<td>Reint</td>
<td>2002</td>
<td>G</td>
<td>(CPCIRR: Bunn and Dixon 2008)</td>
</tr>
<tr>
<td>Syzygium travancoricum</td>
<td>Myrtaceae</td>
<td>India</td>
<td>WP</td>
<td>Aug</td>
<td>1999</td>
<td>D</td>
<td>Anand et al. 2004</td>
</tr>
<tr>
<td>Taraxacum palustre</td>
<td>Asteraceae</td>
<td>UK</td>
<td>HP</td>
<td>Reint</td>
<td>1998</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Tephrosia angustissima var. coralllica</td>
<td>Fabaceae</td>
<td>USA</td>
<td>HP</td>
<td>Int WHR</td>
<td>2003</td>
<td>A, G</td>
<td>(CPCIRR: Wendelberger and Maschinski 2006)</td>
</tr>
<tr>
<td>Tetranemus herbacea</td>
<td>Asteraceae</td>
<td>USA</td>
<td>HP</td>
<td>Int</td>
<td>1988</td>
<td>A</td>
<td>McClain and Ebinger 2008</td>
</tr>
<tr>
<td>Teucrium scordium</td>
<td>Lamiales</td>
<td>UK</td>
<td>HP</td>
<td>Int</td>
<td>1998</td>
<td>A</td>
<td>Beachcroft et al. 2007</td>
</tr>
<tr>
<td>Thlaspi perfoliatum</td>
<td>Brassicaceae</td>
<td>UK</td>
<td>Ann.</td>
<td>NS</td>
<td>NS</td>
<td>D</td>
<td>Rich et al. 1998, Plantlife data</td>
</tr>
<tr>
<td>Tillandsia geminiflora</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Tillandsia stricta</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Tillandsia tenuifolia</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Tillandsia usnoides</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Trichocentrum pumilum</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Trifolium stoloniferum</td>
<td>Fabaceae</td>
<td>USA</td>
<td>HP</td>
<td>Trans, Int</td>
<td>1990</td>
<td>A, G</td>
<td>Smith 1998; (CPCIRR: D. White, D. Osbourne)</td>
</tr>
<tr>
<td>Trinia glauca</td>
<td>Apiaceae</td>
<td>UK</td>
<td>HP</td>
<td>NS</td>
<td>1955</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Veronica spicata</td>
<td>Plantaginaceae</td>
<td>UK</td>
<td>HP</td>
<td>NS</td>
<td>1955</td>
<td>D</td>
<td>BSBI Introductions Database</td>
</tr>
<tr>
<td>Verticordia albida</td>
<td>Myrtaceae</td>
<td>Australia</td>
<td>WP</td>
<td>Int WHR</td>
<td>2004</td>
<td>A, G</td>
<td>(CPCIRR: L. Monks)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Vitaceae</td>
<td>France</td>
<td>WP</td>
<td>NS</td>
<td>1992</td>
<td>D</td>
<td>Arnold et al. 2005</td>
</tr>
<tr>
<td>Vriesea friburgensis</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Vriesea platynema</td>
<td>Bromeliaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>Trans, Int WHR</td>
<td>2001</td>
<td>D</td>
<td>Jasper et al. 2005</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Family</td>
<td>Location</td>
<td>Type</td>
<td>Year</td>
<td>Author(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
<td>------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widdringtonia cederbergensis</td>
<td>Cupressaceae</td>
<td>South Africa</td>
<td>WP</td>
<td>1987</td>
<td>D Mustart et al. 1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanthoxylum flavum</td>
<td>Rutaceae</td>
<td>USA</td>
<td>WP</td>
<td>1999</td>
<td>A, G (CPCIRR: J. Duquesnel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygostates alleniana</td>
<td>Orchidaceae</td>
<td>Brazil</td>
<td>HP</td>
<td>2001</td>
<td>D Jasper et al. 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life history or form abbreviations: Ann. = annual, HP = herbaceous perennial, LLMP = long lived (more than 5 years) monocarpic perennial, LLPP = long lived (more than 10 years) polycarpic perennial, P = perennial, SLMP = short-lived monocarpic perennial, SLPP = short-lived (less than 10 years) polycarpic perennial, U = unknown life form or history, ULPP = unknown longevity polycarpic perennial, WP = woody perennial.

Reintroduction type abbreviations: Aug = augmentation, Int OHR = introduction outside historic range, Int WHR = introduction within historic range, Reint = reintroduction, Trans = translocation, NS = not specified.

First year is the year of outplanting or the earliest year of an outplanting if multiple years were reported; NS = not specified.

Dataset identifier indicates the authors who used this study in their analysis: A = Albrecht and Maschinski, D = Dalrymple and colleagues, G = Guerrant.

References that used entries from the CPC International Reintroduction Registry (CPCIRR) are shown in parentheses with the principal investigator's name and publication. Studies used from peer-reviewed publications that were not reported in the CPCIRR are noted outside parentheses.
Acclimatization: The habituation of a plant's physiological response to environmental conditions (Begon et al. 1990).

Adaptation: Changes in the morphology or physiology of a plant via natural selection.

Adaptive management: A systematic process of continually improving management policies and practices by learning from the outcomes of existing programs (IUCN 1998a).

Assisted colonization: See Managed relocation.

Assisted migration: See Managed relocation.

Augmentation: The addition of individuals to an existing population, with the aim of increasing population size or diversity and thereby improving viability. Also called enhancement, reinforcement, or restocking (Falk et al. 1996).

Best practice: A superior or innovative method that contributes to the improved performance of an organization and is usually recognized as best by peer organizations. It implies accumulating and applying knowledge about what works and what does not work in different situations and contexts, including learning from experience, in a continuing process of learning, feedback, reflection, and analysis on what works, how, and why (IUCN 1998a).

Bioclimatic envelope: Typically derived by examining statistical correlations between existing species distributions and environmental variables to define a species’ tolerance. Envelopes of tolerance are then drawn around existing ranges. With temperature, rainfall, and salinity forecasts, new range boundaries can be predicted.

CPC: Center for Plant Conservation, an organization dedicated to the conservation and restoration of imperiled native plants of the United States.
Dioecious: Having male and female reproductive organs on separate plants.
Endemic: A species native to and restricted to a particular geographic region. Highly endemic species are especially vulnerable to extinction if their natural habitat is eliminated or significantly disturbed (IUCN 1998a).
Enhancement: See Augmentation.
Evolution: Changes in the frequency of genes in a population over time; descent with modification.
Ex situ: The conservation of components of biological diversity outside their natural habitats (IUCN 1998a).
Fitness: The relative contribution an individual makes to the gene pool of the next generation (Begon et al. 1990).
Fundamental niche: The potential range of all biotic and abiotic conditions under which an organism can have a positive population growth rate. The Hutchinsonian fundamental niche can be conceptualized as the n-dimensional hypervolume.
Geitonogamous: Reproducing through self-pollination; one flower is pollinated by pollen from another flower on the same plant.
Gene flow: The spread of genes across and between populations as a result of cross fertilization or seed introductions (Begon et al. 1990).
Genetic drift: Random changes in gene frequency within a population resulting from sampling effects rather than natural selection (Begon et al. 1990).
Hermaphrodite: A plant that has perfect flowers and can self-pollinate.
Historic range: The geographic area where a species was known or believed to occur within historic time (USFWS 1999).
Inbreeding depression: A loss of vigor among offspring occurring when closely related individuals are crossed, resulting from the expression of deleterious genes in the homozygous state and from a low level of heterozygosity (Begon et al. 1990).
Introduction: The intentional or accidental dispersal by human agency of a living organism outside its historically known native range (IUCN 1998a).
Invasive species: Introduced species that increases in abundance at the expense of native species (Primack 2006).
Iteroparous: Capable of reproducing more than once (Silvertown 1982).
IUCN: International Union for Conservation of Nature, the world’s oldest and largest global environmental network, focused on sustainable development and the environment.
Lambda (λ): Annual population growth rate or $\lambda_t = \frac{N_{t+1}}{N_t}$
Managed relocation: The deliberate introduction of organisms outside their native ranges to counteract the negative effects of climate change. Goals of man-
aged relocation include reducing extinction risk, increasing evolutionary potential, and enhancing ecosystem services (Hellmann et al. 2008; Managed Relocation Working Group 2008).

**Metapopulation**: A system of connected, spatially distinct subpopulations (IUCN 1998a).

**Mitigation**: An action that is intended to offset environmental damage (SER 2002).

**Monoecious**: Having female and male reproductive parts on the same plant.

**n-dimensional hypervolume**: All aspects of the environment, physical and biological, are included in the niche (e.g., temperature tolerance, water requirements, competition, predation). Hutchinson (1957) mathematically described the hypervolume in n-dimensional space along n axes corresponding to environmental variables that permit a species’ population growth rate to be positive indefinitely.

**Native plant**: A species that occurs naturally in an area.

**Natural range**: The geographic area within which a species can be found. Sometimes a distinction is made between a species’ natural range and the places to which it has been introduced by human agency (deliberately or accidentally), as well as where it has been reintroduced after extirpation.

**Niche**: See *Fundamental niche* and *Realized niche*.

**Outbreeding depression**: A reduction in vigor or fertility (fitness) resulting from hybridization between genetically distinct individuals or populations of the same species. The loss in vigor is thought to be caused by breaking up co-adapted gene complexes.

**Outplanting**: Movement of plants from an ex situ location to an in situ location (Falk et al. 1996).

**Phytosanitary**: Any measure applied (a) to protect human, animal, or plant life or health (within a Member’s Territory) from the entry establishment or spread of pests, diseases, or disease-carrying organisms; or (b) to prevent or limit other damage (within the Member’s Territory) from the entry, establishment, or spread of pests (IUCN 1998a).

**Population**: A group of individuals of the same species that have the ability to genetically interact and inhabit a defined geographic area.

**Population growth rate**: Change in population size from one time to another. A positive population growth rate indicates an increasing population, whereas a negative population growth rate indicates a declining population. See Lambda.

**Practitioner**: A person involved with all aspects of plant reintroduction, including planning stages and actual placement of plants in the ground.
Raunkiaer plant life forms: A system for categorizing plants using life form categories, particularly related to locations of perennating buds, devised by Christian C. Raunkiaer (1934).

Realized niche: The subset of a fundamental niche remaining after competitive exclusion (Hutchinson 1957). The niche is separate from but can be mapped onto the physical space where an organism lives.

Rehabilitation: Reestablishment of part of the productivity, structure, function, and processes of the original ecosystem (IUCN 1998a).

Reinforcement: See Augmentation.

Reintroduction: The release of individuals into a formerly occupied area after the native population has been lost or become extinct. Also known as reestablishment (IUCN 1998a).

Relative risk ratio: In statistics and mathematical epidemiology, relative risk (RR) is the risk of an event (or of developing a disease) relative to exposure. Relative risk is a ratio of the probability of the event occurring in the exposed group versus a group that was not exposed.

Resilience: The ability of an ecosystem to regain structural and functional attributes that have suffered harm from stress or disturbance (SER 2002).

Resistance: An ecosystem’s ability to maintain its structural and functional attributes in the face of stress and disturbances (SER 2002).

Restocking: See Augmentation.

Restoration: The process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed (SER 2002).

SER: Society for Ecological Restoration, an organization providing a source for expertise on restoration science, practice, and policy.

Stability: The ability of an ecosystem to maintain its given trajectory despite stress; it denotes dynamic equilibrium rather than stasis. Stability is achieved in part on the basis of an ecosystem’s capacity for resistance and resilience (SER 2002).

Translocation: The deliberate and mediated movement of wild individuals or populations from one part of their range to another (IUCN 1998a).

Transplanting: See Outplanting.

USFWS: The US Fish and Wildlife Service, a federal agency charged with working with others to conserve, protect, and improve fish, wildlife, and plants and their habitats for the continuing benefit of the American people.

Vital rate: The rate of change in factors such as fecundity, growth, and survivorship in a population. Even when population numbers are stable, there may be changes in the vital rates.


BCCR. 2006a. IPCC DDC AR4 BCCR_BCM2.0 1PCTTO2X run1. World Data Center for Climate. CERA-DB “BCCR_BCM2.0_1PCTTO2X_1” http://cera-www.dkrz.de /WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_1PCTTO2X_1.

BCCR. 2006b. IPCC DDC AR4 BCCR_BCM2.0 SRESA1B run1. World Data Center for Climate. CERA-DB “BCCR_BCM2.0_SRESA1B_1” http://cera-www.dkrz.de /WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_SRESA1B_1.


Collier. 2005a. IPCC DDC AR4 CSIRO-Mk3.0 1PCTTO2X run1. World Data Center for Climate. CERA-DB “CSIRO_Mk3.0_1PCTTO2X_1” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_1PCTTO2X_1.

Collier. 2005b. IPCC DDC AR4 CSIRO-Mk3.0 SRESA1B run1. World Data Center for Climate. CERA-DB “CSIRO_Mk3.0_SRESA1B_1” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CSIRO_Mk3.0_SRESA1B_1.


Maschinski, J., B. Schaffer, S. J. Wright, K. S. Wendelberger, and J. Roncal. 2007. Ongoing Efforts to Reintroduce and Study Two Endangered Plant Species, Beach Jacquemon-


Literature Cited


Nozawa. 2005e. IPCC DDC AR4 CCSR-MIROC3.2_(med-res) SRESB1 run1. World Data Center for Climate. CERA-DB MIROC3.2_mr_SRESB1_1. Accessed November


seed dispersal and seed predation of Cercocarpus ledifolius (Rosaceae). Oikos 81:434–43.


rootstock “5BB” as influenced by number of air exchanges and the presence or absence of sucrose in culture media. *Plant Cell Tissue and Organ Culture* 75:57–62.


StataCorp, USA. 2011. Stata version 11.0.


Traill, L. W., C. J. A. Bradshaw, and B. W. Brook. 2007. Minimum viable population size:


Matthew A. Albrecht is an assistant curator for conservation biology at the Missouri Botanical Garden, St. Louis, Missouri. He has studied the population biology of medicinal forest herbs and the restoration of eastern oak forest ecosystems. His current research focuses on the demography, reintroduction, and autecology of rare and endangered plants.

Esther Banks is a research assistant at the James Hutton Institute, UK.

Timothy Bell is a professor of botany at Chicago State University, Chicago, Illinois, and Research Associate at the Morton Arboretum, Lisle, Illinois. His research interests include population viability analysis and reintroduction ecology of endangered plants, including Mead’s milkweed, pitcher’s thistle, eastern prairie fringed orchid, and leafy prairie clover.

Marlin L. Bowles is a plant conservation biologist at the Morton Arboretum, Lisle, Illinois, and a conservation officer for the Center for Plant Conservation. His research on restoration ecology of endangered plants has included authorship or coauthorship of more than ten journal articles or book chapters on the US-listed pitcher’s thistle, Mead’s milkweed, and eastern prairie fringed orchid, as well as membership on the federal recovery teams for these species. He has also coedited the book Restoration of Endangered Species, published by Cambridge University Press.

David Coates is a senior principal research scientist and program leader for the Flora Conservation and Herbarium Program and responsible for coordinating
and facilitating research in flora conservation and plant systematics in the Department of Environment and Conservation Western Australia. He is a member of the Western Australian Threatened Species Scientific Committee. His research interests include conservation genetics, plant mating systems, and reintroduction of threatened plants.

**Sarah E. Dalrymple** is a research officer at the Centre for Evidence-Based Conservation, in the School of the Environment at Bangor University, Bangor, UK. Her research on plant conservation includes reintroductions, habitat restoration, and population dynamics of threatened species, with an emphasis on linking research with conservation practice. Sarah is a member of the IUCN Re-introduction Specialist Group and recently joined colleagues from the Re-introduction Specialist Group and the IUCN Invasive Species Specialist Group to form the Task Force on Moving Plants and Animals for Conservation Purposes. This group aims to revise and expand the international guidelines on reintroductions and related interventions.

**Donald A. Falk** is associate professor in the School of Natural Resources, University of Arizona, Tucson. He holds joint appointments in the Laboratory of Tree-Ring Research and the Institute for Earth and Society at the University of Arizona. His research focuses on fire history, fire ecology, fire climatology, and restoration ecology. His publications include numerous journal articles and four books. He serves on the editorial board for the Island Press–SER series *Science and Practice of Restoration Ecology*. Dr. Falk was the first executive director of the Society for Ecological Restoration and cofounder and executive director of the Center for Plant Conservation.

**Edward O. Guerrant Jr.** worked from 1989 to 2011 as the conservation director and seedbank curator at the Berry Botanic Garden, which is a founding participating institution of the Center for Plant Conservation. He oversaw the operation of the garden’s seedbank for rare and endangered plants and conducted research into seed germination and reintroduction projects, usually in cooperation with federal and state land management agencies. He, the seedbank, and conservation program have moved to the Department of Environmental Science and Management at Portland State University, Oregon, where the work will continue.

**Susan Ching Harbin** is a botanist with the Hawaii Plant Extinction Prevention Program, which works to protect Hawaii’s rarest plants from extinction in cooperation with state, federal, and private conservation partners.
Kristin E. Haskins is the research scientist at The Arboretum at Flagstaff and holds an adjunct faculty position in the Department of Biology at Northern Arizona University, Flagstaff, Arizona. Her work focuses on rare plant conservation of Colorado Plateau species, including the US-listed sentry milkvetch *Astragalus cremnophylax* var. *cremnophylax*. Dr. Haskins specializes in belowground plant and soil microbe interactions, with an emphasis on mycorrhizal ecology.

Chad Husby is collections manager and botanist at the Montgomery Botanical Center in Miami, Florida. His work focuses on botanical, horticultural, and statistical research and ex situ conservation of tropical plants in botanical gardens. He has pursued fieldwork in South America, the Caribbean, New Caledonia, and New Zealand.

Stephanie M. Joe is a research specialist with the Oahu Army Natural Resource Program. She completed her MSc in ecology, evolution, and conservation biology at the University of Hawaii at Manoa, where she focused on native plant response to alien slug predation. Her current work focuses on improving management of invasive arthropods and molluscs.

H. Kapua Kawelo is a botanist with the Oahu Army Natural Resource Program, working to stabilize more than fifty endangered Hawaiian plant taxa. She also works with native ecosystems, rare snails, birds, and arthropods.

Brian G. Keel is a conservation biologist specializing in orchids. Research interests include the effects of climate change on orchids and their pollinators, climate-driven orchid migration, and the application of assisted migration. He is working on a project to reclaim a woodlot from a species of nonnative honeysuckle in preparation for the reintroduction of native orchids to the site.

Matthew J. Keir is a botanist currently managing plant conservation tasks including field surveys, research, genetic conservation, and reintroductions of rare plant species for the Oahu Army Natural Resource Program.

Kathryn Kennedy is executive director of the Center for Plant Conservation. The center helps build expertise and capacity for strong, community-based plant conservation programs in US institutions. Dr. Kennedy received her MS degree from New Mexico State University in plant ecology and a PhD in plant systematics from the University of Texas at Austin. Past work included positions with the US Fish and Wildlife Service, the Texas Parks and Wildlife Department, and the
Lady Bird Johnson Wildflower Center. She has served as chair of the Conservation Committee for the Botanical Society of America and on the IUCN Plant Conservation Committee and the International Advisory Council of Botanic Gardens Conservation International.

**Tiffany M. Knight** is an associate professor of biology and director of the Environmental Studies Program at Washington University in St. Louis and a research associate at both the Missouri Botanical Garden and Chicago Botanic Garden. Her research focuses on understanding threats to rare plant populations using demographic data collection, experiments, and modeling and applying results to on-the-ground conservation and restoration.

**Crystal Krause** is a research ecologist with the US Geological Survey, studying how climate change may affect the Papahanaumokuakea Marine National Monument of the northwestern Hawaiian Islands. Her research interests include species distribution modeling with future climate projections, dispersal abilities, and identifying extinction risk.

**Mike Kunz** is the conservation ecologist at the North Carolina Botanical Garden, Chapel Hill. His background is in population and community ecology of invasive plant species. Currently, he conducts research on the reintroduction and demographics of rare plants. He also manages the imperiled plant seedbank, monitors rare plant populations, and performs natural area management. He serves on the board of the Friends of Plant Conservation.

**Caroline Lewis** earned a BS in biology, a BEd in secondary science and environmental science education, and an MS in educational leadership. For 22 years she worked as a science teacher, dean, academic counselor, and high school principal in Trinidad, New York, and Miami. Formerly director of education at Fairchild Tropical Botanic Garden, she currently serves as an education strategist, founder, and CEO of the CLEO Institute, working to build capacity, promote innovation, and inspire leadership in individual educators and educational institutions.

**Xiaoya Li** is the project manager for Fauna and Flora International, China Programme. Li received an MSc in landscape ecology from Beijing Forestry University & Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and a BSc in Soil and Water Conservation at Beijing Forestry University. Li coordinates magnolia conservation projects in Yunnan, focusing on reinforcement, monitoring, management, and recovery of *Manglietiastrum sinicum* and its habitat. Li also developed the community participatory awareness-raising
campaign for the project. Li has also been involved with conifer conservation projects in south China and the FFI Karst Biodiversity Conservation Programme in the limestone area of Southwest Guangxi/EU–China Biodiversity Programme.

Hong Liu is an assistant professor in the Department of Earth and Environment at Florida International University and a research ecologist at the Center for Tropical Plant Conservation, Fairchild Tropical Botanic Garden in Miami, Florida. Her research interests include invasive species biology, conservation ecology, plant mating systems, population viability analysis, and plant–animal interactions. Her current research addresses important environmental issues such as predicting horticultural plant naturalization and the ecological consequences of specialized invasive pollinator and invasive mutualism. She currently leads several conservation and restoration research projects on orchids in tropical and subtropical southwestern China.

Joyce Maschinski is the conservation ecologist leading the south Florida conservation program at Fairchild Tropical Botanic Garden, Miami and is adjunct faculty at Northern Arizona University, Florida International University, and University of Miami. For two decades her research has centered on understanding factors that limit reproduction, growth, and expansion of rare plant populations, the impact of human activities, and potential management solutions for their conservation. She and her colleagues at Fairchild and at The Arboretum at Flagstaff have conducted more than sixty-five rare plant reintroductions of seventeen species. She has organized several rare plant task forces and conferences on endangered plants in Arizona and Florida and has made presentations to international audiences at scientific conferences. She has published widely about plant reintroductions and threats to rare plants, including demographics, genetics, hybridization, herbivory, habitat destruction, timber harvest, trampling, climate change, and fire.

Pilar Maul is an assistant professor of biology at St. Thomas University in Miami Gardens, Florida. She earned her PhD in cell and molecular biology at the Florida Institute of Technology. Her postdoctoral work at the US Department of Agriculture and at the University of Florida focused on the identification of molecular mechanisms of chilling tolerance and the induction of somatic embryogenesis in citrus species. She has more than 15 years of experience in the use of plant tissue culture, studying various aspects of plant biology in potato, sweet potato, and other species. Currently she conducts tissue culture research in a collaborative project with Bok Tower Gardens and has collaborative research projects with the US Department of Agriculture on the genetic improvement of flower bulbs and avocado.
Leonie Monks is a research scientist with the Western Australian Department of Environment and Conservation in Perth, Western Australia. She is responsible for planning, implementing, and monitoring reintroductions of threatened plant species. Her research is focused on improving reintroduction techniques and refining reintroduction success criteria.

Jennifer Ramp Neale is director of research and conservation at Denver Botanic Gardens, Denver, Colorado. Her work focuses on conservation and restoration genetics; the incorporation of genetics and pollination in conservation and restoration planning, including the incorporation of genetic data into geographic information systems; community-level genetic examination and conservation; and demographic monitoring and pollination studies of rare and endangered flora in the Rocky Mountain region.

Valerie Pence is director of plant research at the Center for Research on Endangered Wildlife at the Cincinnati Zoo, Cincinnati, Ohio. She conducts groundbreaking research on cryopreservation and plant propagation.

Deana D. Pennington is an interdisciplinary geoscientist and informatics specialist at the University of Texas at El Paso. Her research interests revolve around cross-disciplinary study of climate change impacts on natural systems. She has conducted landscape- and regional-scale research in the areas of wildfire and harvest disturbance in forests, drought effects in semiarid grasslands, landscape change effects on biogeography and spatial–temporal patterns of biodiversity, and paleoenvironmental reconstructions. She is interested in cross-disciplinary learning, knowledge-sharing techniques, and collaborative innovation.

Cheryl Peterson has been manager of the Rare Plant Conservation Program at Bok Tower Gardens, Lake Wales, Florida since 2002. She has a bachelor’s degree in microbiology and a master’s degree in cell and molecular biology. Her previous research has involved marine biodiversity and invertebrate genetics, and she has studied the Florida endemic mint genus *Conradina*. She is currently working to establish protected populations, studying seed germination and monitoring populations of several rare plant species.

Jennifer Possley is a field biologist at the Center for Tropical Plant Conservation, Fairchild Tropical Botanic Garden, Miami, Florida. She maps and monitors the rare flora of Miami–Dade County, has reintroduced eight rare plant species into seventeen locations, and is currently researching the ecological effects of vegetation management on biodiversity. She has special interests in pteridophytes and
invasive plants. Before joining Fairchild’s research staff, Jennifer received a BA in biology from Kalamazoo College and an MS in agronomy from the University of Florida.

Andrew S. Pullin is a professor of evidence-based conservation at Bangor University, UK. He is interested in evidence-based practice in environmental management, adapting methods from the field of human health care to improve the potential of science to inform policy and management decisions. He is director of the Centre for Evidence-Based Conservation and cofounded the Collaboration for Environmental Evidence, which seeks to provide a reliable source of evidence on environmental impacts of human actions and effectiveness of environmental interventions worldwide.

Johnny Randall is the assistant director for natural areas and conservation programs at the North Carolina Botanical Garden and adjunct faculty in the Curriculum for the Environment and Ecology, both part of the University of North Carolina at Chapel Hill. His primary responsibilities are to oversee the conservation and management of natural areas and administer the garden’s seedbank programs. He also does research on rare plant reintroductions and habitat restoration and rehabilitation. He is a member of the North Carolina Plant Conservation Scientific Committee and a board member and past president of the North Carolina Exotic Pest Plant Council, and he sits on several other conservation boards and committees.

Peter H. Raven is president emeritus of the Missouri Botanical Garden and George Engelmann Professor of Botany Emeritus at Washington University in St. Louis. In addition, he is a trustee of the National Geographic Society and chairman of the society’s Committee for Research and Exploration. For nearly 39 years, he has headed the Missouri Botanical Garden, an institution he has nurtured to become an international, world-class center for botanical research, education, and horticulture display. He is a member of more than twenty academies of science in countries around the world and a recipient of the National Medal of Science, the highest award for scientific accomplishment in the United States. He has written numerous books and publications, both popular and scientific. He devotes much of his time to advocacy for conservation and sustainable development.

Sarah Reichard is a professor at the University of Washington in Seattle and is associate director of its Botanic Garden. Her research is focused on understanding the biology of invasive plants and using that understanding to develop risk assessment methods to prevent their introduction and spread. She coauthored a
National Academy of Sciences report, “Predicting Invasions of Non-indigenous Plants and Plant Pests.” Editor of *Invasive Species in the Pacific Northwest* (University of Washington Press) and author of numerous research papers, she also served 6 years on the federal Invasive Species Advisory Committee and is on the Invasive Species Specialist Group of the International Union for the Conservation of Nature. Her newest book is *The Conscientious Gardener: Cultivating a Garden Ethic* (University of California Press). She founded and directs the Washington Rare Plant Care and Conservation Program, which works with federal, state, and local agencies to protect Washington’s rare plant species.

**Julissa Roncal** received a BS and Licenciature from Cayetano Heredia University in Perú and a PhD from Florida International University, Miami. She recently received the Marie Curie IntraEuropean Fellowship to work at the Institut de Recherche pour le Développement in France. Her research focuses on the habitat ecology, phylogenetics, biogeography, and conservation of the palm family (Arecaceae), particularly on tribe Geonomatæae. She has also conducted restoration ecology research addressing the new habitat conditions for rare and endangered species in south Florida in the face of anthropogenic change.

**Gavin B. Stewart** is a scientist at the Centre for Reviews and Dissemination, University of York, UK.

**Weibang Sun** is a professor of botany and director of Kunming Botanical Garden under Kunming Institute of Botany, Chinese Academy of Sciences. His chief research interests are conservation biology of rare and endangered Chinese plants, sustainable uses of the economically important plant resources in southwest China, and impacts of alien invasive plants on biodiversity in Yunnan province. He has published seventy articles and twelve illustrated plant books.

**Pengyun Tao** is the senior engineer at the Seedling Station of Wenshan Forestry Bureau, Southeast Yunnan, China. Tao evaluates and cultivates trees for reforestation.

**Lauren Weisenberger** is a research botanist for the Oahu Army Natural Resources Program. She specializes in research that determines the long-term storage potential of seeds of rare plant species, the reproductive biology of rare plants, and the design of plant reintroductions. She oversees the Oahu Army Seed Laboratory and Seed Bank. She is a PhD candidate in ecology, evolution, and conservation biology (botany) at the University of Hawaii, Manoa, investigating levels of
inbreeding depression in small plant populations and potential for outbreeding depression in mixed-source reintroductions.

**Kristie S. Wendelberger** worked as a rare plant biologist at Fairchild Tropical Botanic Garden for 4 years before obtaining her MS from the University of North Carolina, Chapel Hill. She is currently a PhD student at Florida International University. Her work in Florida and North Carolina involved studying and performing experimental reintroductions on some of south Florida’s rarest plant species. Her current dissertation research examines sea-level rise effects on rare coastal plant communities in Everglades National Park.

**Samuel J. Wright** has been a field biologist at Fairchild Tropical Botanic Garden’s Center for Tropical Plant Conservation since 2001. He has a BS degree in wildlife ecology and conservation from the University of Florida. He is responsible for ecological research related to recovery and restoration projects of native endangered plant species, particularly those that occur in south Florida’s coastal dune ecosystems. He works closely with natural area managers from Palm Beach, Broward, and Miami–Dade Counties in determining appropriate management techniques for native rare plants and habitats.

**Huabin Yang** is an engineer at the Seedling Station of Wenshan Forestry Bureau, Southeast Yunnan, China. Yang evaluates and cultivates trees for reforestation.

**Yuan Zhou** is an assistant professor at Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences. Zhou’s research interests include the introduction, domestication, and conservation of economically significant plants.
Abronia umbellata ssp. breviflora, 20
Acacia aprica, 25–26, 192, 194b
Acacia cochlocarpa ssp. cochlocarpa, 23, 25–26, 193
Acacia cretacea, 201
Acacia whibleyana, 181, 201
Acclimatization, 89, 91–95, 100, 104, 270, 319
Acetobacter diazotrophicus, 98
Actinomycetes, 98
Actinorhizal plants, 98
Adaptive management, 232, 248, 319
AFLP (amplified fragment length polymorphism), 72, 73t, 83t, 85t
Aftercare, 278f, 299
Aldrovanda vesiculosa, 40
Allee effects, 172–173
Allelic diversity, 77, 200
Allozyme analysis, 77, 79
AMF (arbuscular mycorrhizal fungi), 26, 95–96, 102–103, 246–247
Amnophila breviligulata, 76
AMO (Atlantic Multidecadal Oscillation), 113
Amorpha herbacea var. crenulata, 23, 26, 56t, 202
Amplified fragment length polymorphism (AFLP), 72, 73t, 83t, 85t
Animal-pollinated species, 198, 199b
Annual plants: monitoring plans, 302; preparing the reintroduction, 291; propagule stage, size, and survival, 175–176, 181, 183, 186–188; in rare plant reintroductions, 13, 39–40, 267
Anthoceros punctatus, 99
Anthyllis cytisoides, 99
Aquatic habitats, 25
Arabis koehleri var. koehleri, 14
Arbuscular mycorrhizal fungi (AMF), 26, 95–96, 102–103, 246–247
Area under the curve (AUC), 139
Arenaria grandiflora, 19, 184
Asclepias incarnata, 77
Asclepias meadii, 180, 195, 196b, 196f
Ascomycota, 97
Assisted colonization, 232–233, 260. See also Managed relocation (MR)
Assisted migration, 230–232. See also Managed relocation (MR)
Astragalus bibulatus, 25
Astragalus tyghensis, 160t, 162, 164
Atlantic Multidecadal Oscillation (AMO), 113
AUC (area under the curve), 139
Augmentation: defined, 319; in managed relocations (MR), 271; monitoring, 302;
Augmentation (continued)
   public role in, 56t, 65–67b; in rare plant reintroductions, 22, 211, 213; as reintroduction type, 13–14; research areas of need and opportunity, 206
Australian Trust for Conservation Volunteers, 55, 63–64
Azoarcus spp., 98
Azospirillum, 98
Azotobacter, 98

Back to Natives Restoration Project, 64
Bacterial washes from native whole soil, 102–103
Banksia anatona, 18
Banksia brownii, 18
BAP (benzyl-aminopurine) and propagation survival, 93–94b
Baptisia leucantha, 77
BCCR (Bjerknes Centre for Climate Research), 136
Belowground plant tissues, 89–91
Beneficial fungi, 95–97
Benzyl-aminopurine (BAP) and propagation survival, 93–94b
Best practice, 263, 268, 319. See also CPC Best Reintroduction Practice Guidelines
Bioclimatic envelopes, 235, 258, 259, 319
Biodiversity threats, 27–28, 38, 132–133
Biological control programs, 246
Biomes represented in reintroduction projects, 34
Biotic resistance, 245–246
Bjerknes Centre for Climate Research (BCCR), 136
Botanical Society of the British Isles (BSBI), 31
Botanists in Training Program, 61
Brachycome muelleri, 204
Bromus tectorum, 25–26
BSBI (Botanical Society of the British Isles), 31

Calothamnus quadrifidus, 198
Castilleja levisecta, 14
Casuarina seedlings, 102
Centaurea corymbosa, 157, 182
Centaurea diffusa, 247
Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, 92b
Center for Global Environmental Research, NIES, 136
Center for Plant Conservation (CPC), iv, 2, 234, 319
Cercocarpus ledifolius, 115
Channel Islands Restoration, 64
Children, outreach programs for, 57–59t, 60–61b, 63–64
Cirsium dissectum, 80
Cirsium pitcheri, 157, 163, 174, 195
Climate change: chemical ecologies of rare species and, 257–258; expected effects, 225–226, 243; genetic diversity within communities, 87–88; global models, 133; habitat suitability, 109; plant adaptations, 74, 109–110, 230; projections for Colorado Plateau, 146–147; reduced extent of historic ranges, 32; strategies for ameliorating impacts, 18, 27–28, 48, 64, 132–133; time sequence depicting change of spatial location of reintroduced population, 129f
Climate change scenarios: in Colorado Plateau study, 136–137; extinction risk under no dispersal and full dispersal, 145f; habitat loss, 144f; habitat suitability, 146f, 147–148; preparing for reintroductions under, 48; temperature and precipitation trends, 152t
Climate envelope modeling, in MR, 260
Climate models, 235–236
Climatic factors in plant distributions, 112–113
Climatic variations, timescales, 113
Clonal collections, 217
Coadapted species, experimental manipulations of, 128
Cochlearea polonica, 183
Co-culturing of fungus and seeds, 100
Collaborations, 73–74, 87, 271
Colorado Plateau study, 131–153; overview, 131–134; climate change projections, 146–148; climate change scenarios, 136–137; climate data trends for model scenarios, 152t; correlation coefficient values between environmental variable grids, 155t; correlation matrix for two environmental variable grids, 151t; dispersal analysis, 141, 148–149; extinction risks, 145f, 149; geology and isothermality, 147; habitat loss or gain,
143, 144f; habitat suitability in climate change scenario, 146f, 147–148; implications for traditional restoration work, 147–148; model evaluation and results, 138–139, 141–143, 142t; predictor variables, 134–137, 135t; risk analysis, 143–145; sample analysis, 139–140; soil moisture recharge, 147; species occurrence points, 137; species of interest, 134; study area, 135f, 134; threshold-dependent test results, by species, 153t

Common garden studies, 78
Commonwealth Scientific and Industrial Research Organization (CSIRO), 136
Community outreach. See Volunteer and community outreach efforts
Comparative information: in defining project goals and evaluating success, 191–192; natural and reintroduced populations, 194b, 195–197; research needs and opportunities, 206
Competition, 25–26, 38, 121
Connect to Protect Network, FTBG, Florida, 64
Conservation: ex situ, 27, 255f, 256f; integrated strategies, 270; strategic decision-making, 143–148; themes in curricula, 61
Conservation activities and programs, 53–59t, 68. See also names of individual conservation programs; Public role in conservation of plant species; Volunteer and community outreach efforts
Conservation introductions, 31–32
Consolea corallicola, 19
Cordylanthus maritimus ssp. maritimus, 192, 201–202
Coreopsis tripteris, 77
CPC (Center for Plant Conservation), iv, 2, 234, 319
CPC Best Reintroduction Practice Guidelines, 277–306; aftercare, 278f; aftercare of the reintroduction, 299; designing reintroduction experiments, 284b; documentation, 305–306; funding, 285–286; genetic considerations, 287–289; habitat or landscape-level considerations, 296b; implementation, 297–299; justification for reintroductions, 279–282, 280b; legal issues, 285–286; monitoring plans, 300–305; in MR proposal evaluation, 239; planning a reintroduction, 282–297; population biology considerations, 295–297, 296b; recipient site location, 293b; reintroduction process flow diagram, 278f; reviewers for reintroduction plans, 285b; source material and horticulture, 289–292; species biology, 286–287; value of, 263
CPC International Reintroduction Registry (CPCIRR), 9–29; climate change and reintroductions, 27–28; database contributions by practitioners, 49; experimental testing, 26–27; failed projects, underrepresentation of, 267; founder population size and number of attempts, 20; founder stages, 19–20; goal of, 9–10; hypotheses and experimental results, 20–26; materials and methods, 13–18; phylogeny, geography, life form, and history, 11–13; pre-planting and post-planting habitat manipulation, 21f; projects in order of planting date, 12f; propagule types, 19; Ptilimnium nodosum, 15–18b, 16f–17f; source populations, 19; types of reintroductions, 11–18
CPCIRR. See CPC International Reintroduction Registry (CPCIRR)
CSIRO (Commonwealth Scientific and Industrial Research Organization), 136
Cyanacea superba, 211, 222
Cyanobacteria, 98
Cyclobalanopsis myrsinaefolia, 80
Cytandra dentata, 222
Dalea purpurea, 80
Dark septate endophytes (DSEs), 97
Decline mechanisms, 38, 44, 49–50
Delissea waianaeensis, 211–212
Demographic issues: characteristics of reintroduced vs. natural populations, 193–194; data collection constraints, 158; in matrix population models, 156; microsite variation influences in long-term studies, 115; stochasticity and endangered plant reintroductions, 172
Diazotrophs, 98
Dioecious, defined, 320
Dioecious species, 217–218, 287
Discriminant function analyses, 121
Dispersal of plant species: in degraded and fragmented landscapes, 64, 243–244; limitations, 112; pathways, in recipient site assessments, 121; SDM analysis, 141, 145f, 148–149

Distribution of plant species. See Species distribution

Disturbance regimes, 47, 114–115, 192–193

Disturbance tolerances, in recipient site assessments, 121

Documentation of reintroduction processes, 86, 305–306. See also Information sharing

DSEs (dark septate endophytes), 97

Dual colonizations, 99

Ecological resilience concepts, 248

Ecoprovinces, climate-driven adaptation, 109–110

Ectomycorrhizal fungi (EMF), 96, 101–102, 105, 247

El Niño Southern Oscillation (ENSO), 113

EMF (ectomycorrhizal fungi), 96, 101–102, 105, 247

Endangered plant species, 1, 54–57, 172, 210, 234. See also names of individual species

Endangered Plants Stewardship Network, 61

Endangered Species Act (ESA), United States, 209, 244–245, 261

Endemic, defined, 320

Endemism and reintroduction survival, 44–45

Endophytes, 97, 247

Enemy release hypothesis (ERH), 245–246, 248, 257t

Enhancement. See Augmentation

ENSO (El Niño Southern Oscillation), 113

Environmental drivers on population growth, 157

Environmental manipulation projects, 25

ERH (enemy release hypothesis), 245–246, 248, 257t

Erigeron parishii, 193, 202

Eriogonum ovalifolium var. vineum, 193, 202

ESA (Endangered Species Act), United States, 209, 244–245, 261

Eucalyptus salmonophloia, 192

“Evaluating Plant Reintroductions as a Plant Conservation Strategy” (CPC symposium), 2, 234–236

Evidence-based approach to reintroductions, 33. See also Experimental plant reintroductions

Evolution, 72, 88, 171, 207, 230, 320

Experimental manipulations of coadapted species, 128

Experimental plant reintroductions: designing, 7, 268t, 284b; factors influencing success, 117; PVA in, 169t; recipient site assessments, 121; testable hypotheses, 9, 20–21, 86–87; transplant founders in, 175–180. See also CPC International Reintroduction Registry (CPCIRR)

Ex situ, defined, 320

Ex situ collections, 1–2, 189, 211–214, 217–219, 233, 273. See also CPC Best Reintroduction Practice Guidelines

Ex situ institutions, 42–44

Ex situ plant conservation, 27, 66–67b, 89, 252, 254f

Ex situ source material: propagule stage and life history, 176–177, 180; in review of plant reintroductions, 9, 14, 15b, 23, 42–43; transitioning to new environments, 91, 101, 104

Extinction risk, 64, 141, 145f, 149, 175, 182

Facultative selfers, 211

Failures in plant reintroduction projects, 47, 87, 185, 265–267

Fairchild Tropical Botanic Garden (FTBG), Florida, 57, 60–61b, 60–61f, 64, 252, 255f–256f

Feedback from readers, 263

Fertilizer, artificial, effect on seedlings outplanted to novel habitat, 26

Field botanists, amateur, 62

Field observation and studies, 78

Field soil applications, 100–101

Filago gallica, 189

Fitness, 73–74, 76–77, 86, 197, 213, 215, 320

Flora and Fauna International China, 66b

Flueggea neowawraea, 217–218

Founder population: plant longevity and reproductive biology, 163–164

Founder populations, 171–188; overview of relevant theory, 172–174; economic costs of seeds vs. transplants, 180; effective vs. census size, 14; genetic variation of, 199b; implications for managed relo-
cation, 187–188; implications for traditional reintroductions, 185–187; number of, and reintroduction success, 45–46; propagule stage and life history, 180–182; propagule stage and survival, 176–180; research needs, 186–187; seed sourcing, 201; size and number of attempts, in CPCIRR, 20; size influence on survival, 38–39, 182–185; size recommendations, 188; size requirement calculation, 166; small population paradigm, 172–173; studies selected for review and analysis, 174–176; type, and population growth, 173–174. See also Propagules
Frankia, 98, 102
Fundamental niche, defined, 320
Funding, 285–286
Fungal mycobiont, in orchid survival, 238–239b
Fungi, beneficial, 95–97

Gap dynamics, 115
GARP (Genetic Algorithm for Rule Set Production), 132
Geitonogamous, defined, 320
Gene flow, defined, 320
Genetic Algorithm for Rule Set Production (GARP), 132
Genetic analyses, to evaluate reintroduction success, 269–270
Genetic clones, 125–126b
Genetic considerations, 71–88; in appropriate use of MR, 87–88; bottlenecks and events, 202; CPC Best Reintroduction Practice Guidelines, 287–290; divergence of existing wild populations, 46; evolution in adaptation to climate change, 230; feedback between founder population size and, 182–183; implications for traditional reintroduction work, 81–86; post-reintroduction analyses, 79–81; pre-reintroduction analyses, 77–79; preserving variation, 210; research needs, 86–87; in restoration, 71–72; sampling guidelines, 74–75; seeding technique evaluation, 81; in small populations, 210–213; source material and, 290b
Genetic diversity: climate change and, 87–88; measuring, 72–74, 82–85t; in reintroduced populations, 79–81; in reintroduced vs. wild populations, 81–86; of reintroductions in degraded habitats, 22–23; in stock or nursery propagules, 75–81
Genetic drift, 320
Genetic expertise in collaborators, 73–74
Genetic storage collections, ex situ, 211
Genetic variation: in assessing reintroduction success, 191, 204; benchmarking for mating system and, 206; neutral, 73–74; in success criteria for reintroductions, 198–200
Geocarpon minimum, 180
Geographic information system (GIS), 134–135
Geographic scale, plant distributions, 112–113
GIS (geographic information system), 134–135
Global climate change. See Climate change
Global climate data models, 135
Global Strategy for Plant Conservation, Target 8, 189
Glossary, 319–322
Goat control, 220
Gondwana Link, Western Australia, 64
Greening Australia, 63–64
Grevillea calliantha, 203b
Grevillea humifusa, 18, 25
Grevillea scapigera, 200b
Habenaria repens, 238–239b, 239t
Habitat restoration, 63–64, 68–69, 77
Habitats: aquatic, 25; in conservation applications of niche theory, 116; degraded, and genetic diversity of reintroductions, 22–23; failure caused by unfavorable conditions in, 47; losses under climate change scenarios, 48, 109, 143, 144f; manipulation, pre- and post-planting, 21f; microhabitat comparison to, 24; native diversity and invasibility of, 248; in reintroduction projects, 34; species with broader tolerances for, 44–45; xeric, 181
Habitat suitability: as determining factor in long-term population persistence, 166–168, 184; indicators of, 49–50; Managed Reintroduction and, 187; SDM and, 131, 146f; stratified random
Habitat suitability (continued)
sampling and, 116; survey limitations, 49. See also Recipient site assessment
and selection
Hawaii: dioecy of flora, 213; expected effects
of climate change on biota of, 225–226;
federally listed plants, 209; key threats
to plants, 219–220; standard of stability
for endangered plant species, 210. See also
Oahu Army Natural Resource Rare
Plant Program (OANRP)
Hawai'i and Pacific Plant Recovery Coordi-
nating Committee, USFWS, 210
Helenium virginicum, 304
Herbaspirillum seropedicae, 98
Herbivory, 115, 166–168, 220–222
Hermaphrodite, defined, 320
Hesperomannia arbuscula, 214–215
Heterogeneity in reintroduction sites, 44,
115, 126b
Hibiscus brackenridgei ssp. mokuleianus,
224–225
Historic range: in assessing habitats for re-
introduction, 120; climate change and
reduced extent of, 32, 48; defined, 320;
environmental factors limiting,
127–128; reintroductions within, 88,
235, 244; risk ratio of reintroductions
within vs. outside, 18, 46–47, 49
Holcus lanatus, 105
Holocarpha macradenia, 185
Horticultural history, 23
Horticultural techniques to improve propa-
gule health and reintroduction success,
175, 270
Hutchinsonian niche, 110–111
Hybrids, and risk, 200, 225, 234, 259,
280–281, 287–289, 293
Hymenoxys acaulis, 14
Hymenoxys acaulis var. glabra, 78
IAE (Institute for Applied Ecology), 57
Implementation of reintroductions, 297–
299
Inbreeding depression, 72, 172, 198, 199b,
320
Infection pressure, 249
Information sharing, 32, 49, 87, 136,
267–268, 271
Inoculation pressure, 249
Inoculum, 26, 99–106
Institute for Applied Ecology (IAE), 57
Intergovernmental Panel on Climate
Change (IPCC), 136–137
International Culture Collection of Vesicu-
lar Arbuscular Mycorrhizal Fungi
(INVAM), 103
International Union for Conservation of Na-
ture (IUCN), 32, 34, 65–67b, 190,
252
Inter-simple sequence repeats (ISSR) analy-
sis, 80
Introduced soil microbes, 105–106
Introduction, defined, 320
INVAM (International Culture Collection of
Vesicular Arbuscular Mycorrhizal
Fungi), 103
Invasion biology, 245–251, 256–258
Invasion risks, 225–226, 228, 236, 245,
248–250, 252–256, 259–261. See also
Weed risk assessment (WRA)
Invasive removal treatments, 127
Invasive species, defined, 320
In vitro-grown plant materials, 91–92, 93f,
99–100, 270
IPCC (Intergovernmental Panel on Climate
Change), 136–137
Island species, 244
Isotria medioluoides, 18
ISSR (inter-simple sequence repeats) analy-
sis, 80
Iteroparous, defined, 320
IUCN (International Union for Conserva-
tion of Nature), 32, 34, 65–67b, 190,
252, 320
Jacquemontia reclinata, 22, 56t, 78–79, 121,
183
Jane Goodall Institute, 61
Jubaea dispersa, 221
Justification of reintroductions, 279–282,
285–286
Kankakee Sands, Indiana, 77
Kunming Botanic Garden, 66b
Labordia cyrtandrae, 215–216
Lag phase, 249
Lambda (λ), defined, 320
Lambertia orbifolia, 199b
Lambertia orbifolia ssp. orbifolia, 23–24,
199b
Land management, translocation vs., 18
Landscape-level considerations, 64, 109–110, 113–114, 243–244, 296b
*Lantana canescens*, 24, 26, 56t, 122–124
*Lasthenia conjugens*, 79–80
*Lathyrus vernus*, 160t, 162
Legumes, 97
Lichens, 98
Life history of founder populations, 74, 177f, 187–188, 198, 201
*Lilium occidentale*, 23, 202
Living collections, ex situ, 9, 217
Local adaptations, 74
*Lomatium* species, 124–125, 235–236
Long-lived plants, success criteria for reintroductions, 189–208; overview, 189–190; comparing mating systems in natural and reintroduced populations, 199b; establishment and survival, 201–202; exponential growth projections of *Asclepias meadii* juveniles, 196f; genetic variation, 198–200; implications for traditional reintroduction work, 204–206; mating systems, 197–198; prospects and cautions for appropriate use of MR, 206–207; PVA, 193–197; reintroduction success, 190–192; reproductive output, recruitment of subsequent generations, and response to disturbance, 192–193; survival rates after 1, 4, and 10 years, 203b; using genetic studies to promote reintroduced population health, 200b; using growth measurements to judge suitable reintroduction sites, 205b; vegetative growth, 202–204
*Lupinus aridorum*, 92–94b
*Lupinus guadalupensis*, 184
*Lupinus sulphureus* ssp. *kincaidii*, 180, 184
*Lupinus tidestromii*, 160t, 162–163
*Magnolia sinica*, 65–67b, 192
Managed breeding, 217
*Manglietiastrum sinicum*, 65–67b
Maternal line, 22
Mating systems. See Reproductive biology of plant species
Maxent (maximum entropy algorithms), 132, 138
Maximum entropy algorithms (Maxent), 132, 138
Meta-analysis of plant reintroductions, global, 31–50; current use of reintroductions, 33–38; historic range, success within vs. outside, 46–47; literature search, 35–37t; methodology, 32–33; parameters in assessment of effectiveness, 39t; population survival over time, 41–47; preparing for reintroductions under climate change scenario, 48; propagule donor populations, 45–46; propagules, ex situ-derived vs. wild, 43–44; recruitment in situ by propagule source and type, 43f; removing cause of decline and propagule survival, 44; risk ratios and endemicity, 45f; species with broader habitat tolerances, 44–45; studies used, 307–317; success of reintroductions, 38–41; synthesis and insights from, 265–269
Metapopulation, defined, 321
Metapopulation theory, 112
*MHB* (mycorrhiza helper bacteria), 98
Microbial combinations, 104
Microbial inoculum, 26, 99–106
Micropropagation, 92b, 95
Microsite significance, 115, 126b, 128
Mitigation, defined, 321
Molecular analyses, 101
Molecular markers, 73, 199–200, 200b, 205
Molluscicides, 222–223
Monitoring reintroduced populations: CPC
Best Reintroduction Practice Guidelines, 300–305; genetic variation assessment, 199; in global meta-analysis, 41; long-term, 29, 201, 259–260, 267

Monoecious, defined, 321
Montane species, 244
MR. See Managed relocation (MR)
MS (Murashige and Skoog) medium, 92–93b
Mulching, 25
Murashige and Skoog (MS) medium, 92–93b
Mutualisms, 115, 246–247, 257t
Mycohobiont distribution, 238–239b
Mycorrhizal fungi, 26, 95–96, 100–106, 238–239b, 246–247

Native plant, defined, 321
Natural areas, fragmented, 64, 243–244
Naturalists, amateur, 62
Natural populations. See Wild populations
Natural range, defined, 321
Natural Resource Management, 68
Nature, benefits of connections to, 53–54
n-dimensional hypervolume, 321
Neural networks, 132
New England Wild Flower Society Plant Conservation Volunteers program, 62
New Zealand, successful reintroductions, 189–190
Niches and niche theory, 49, 110–111, 113–117, 128
NIES (National Institute for Environmental Studies), 136
Nitrogen-fixing cyanobacteria, 98
Noongar people, 64
Nostoc species, 98–99
Nursery or stock populations, 75–81


Outplanting: defined, 321; duration of practice, 33–34; in historic ecotones vs. restoration areas, 26; number of attempts and probability of success, 20, 21f; nursery-grown plants with known maternal founders, 211; realized-niche testing, 117; risk reduction for invasive organisms, 260–261; water availability as survival factor, 25

Outreach programs. See Public role in conservation of plant species; Volunteer and community outreach efforts

Pacific Decadal Oscillation (PDO), 113
PAR (photosynthetically active radiation), 24
Passiflora sexflora, 56t
Patch dynamics, 111–112, 114–115, 120–121, 250
(PDO) Pacific Decadal Oscillation, 113
Pediocactus knowltonii, 10, 181, 190–191, 202
PGPR (plant growth-promoting rhizobacteria), 98, 102, 104
Photoautotrophic cultures, 95
Photosynthetically active radiation (PAR), 24
Phytophthora cinnamomi, 18
Phytosanitary, defined, 321
Pine rocklands, 64
Piriformospora indica, 96–97
Place-based learning, 57
Plant communities: composition, 247–248, 258; matching, in site selection for re reintroduction, 50; resilience, 248, 257t
Plant growth-promoting rhizobacteria (PGPR), 98, 102, 104
Planting medium, 15
Plant longevity, 163–165. See also Long-lived plants, success criteria for reintroductions
Plant reintroductions: assessing current status worldwide, 2; goals of, 171; importance of review, 1; as recovery strategy for endangered plant species, 1; scarcity of PVAs, 193; studies that exemplify well-replicated experimental designs, 268t
Plant-soil feedback systems, 101
Plant species distribution. See Species distribution
Plant species migrations, 230–232
Plant stage distributions, environmental factors in, 117
Pollination biology, 198, 199b, 213–216
Population, defined, 321
Population biology, 295–297
Population dynamic theory, 181
Population growth rates, 112, 321
Population matrix models, 155–159, 193–197
Population viability analysis. See PVA (population viability analysis)
“Postcard Design Contest and Political Action” (Fairchild Challenge), 60–61b
Post-planting considerations, 79–81, 299b
Potentilla robbinsiana, 190
Practitioner, defined, 321
Predation, 115, 166–168, 220–222
Presence-only distribution models, 132
Primula sieboldii, 76–77
Pritchardia kaalae, 220–221
Propagules: breeding history, 23; collection and storage of, 261; environmental conditions vs. quantity of, 166–168; establishment proportions for seeds vs. transplants, 177f; ex situ-sourced, 14, 23, 43–44; genetic diversity in, 75–76; improving health and reintroduction success, 270; multiple-population sources, 81, 88; obtaining, 216–219; preparation of, 89; pressure, 249, 257t; types, 19, 39, 176–182, 188; wild-sourced, 23. See also Founder populations
Propagule stages, 19–20, 163–165, 175–182, 187–188
Propagule survival, 38, 40, 43–46, 93–94b, 100–101
Prostanthera eurybioides, 183, 201, 205b
Pseudophoenix sargentii, 14, 20, 120, 157–158, 189, 192, 195–197, 204
Ptilimnium nodosum, 15–18b, 16f–17f
Public outreach. See Volunteer and community outreach efforts
Public role in conservation of plant species, 53–70; contributions to endangered species recovery, 54–57; implications for traditional restoration work, 68; in preparing for climate change, 69; private landowners in, 64–68; programs designed to engage the public, 58–59t; programs with specialized training, 61–63; public involvement impacts, short- and long-term, 55f; regionally organized umbrella groups in, 62; restoration program examples, 63–64
Purshia subintegra, 181, 191, 201
PVA (population viability analysis), 155–170; overview, 155–156; in Asclepias meadii reintroductions, 196b; in assessing reintroduction success of long-lived species, 204; effects of mean and variation on number of seeds needed to restore a viable population, 162–163; effects of plant longevity and founder stage on reintroduction success, 163–165; founder size and age at first reproduction, 165f; founder size and propagule stage, 174–175; limitations of, 165, 204; matrix population models and PVA of reintroduced populations, 156–158; in modeling population trajectory and persistence, 192; models, 168–169; natural populations studied for at least 4 consecutive years, 160–161t; practical advice for practitioners, 165–166; quantitative synthesis, 158–168; reintroduction case studies, 166–168; in success evaluation of reintroduced long-lived plants, 193–197; in Trillium grandiflorum reintroductions, 169t
Quantitative assessment, in identification of suitable recipient patches, 120–121
Quercus euboica, 101, 104
Random amplified polymorphic DNA (RAPD), 78–79
Ranunculus prasinus, 190–191
Rat control, 220–221
Raunkiaer plant life forms, 322
Reader feedback, 263
Realized niche, defined, 322
Rebirth the Earth: Trees for Tomorrow (Tanzania), 61
Receiver operating characteristic (ROC) analysis, 139
Reciprocal garden experiments, 28
Reciprocal transplant experiments, 105
Recruitment, 18b, 38, 43f, 185–186, 191–193
Rehabilitation, defined, 322
Reinforcement. See Augmentation
Reintroduced plant populations, persistence of, 187
Reintroduction, defined, 322
Reintroduction projects: models for, 268–269; planning, 168, 211; preparing for, 282–297
Reintroduction science and practice: overview, 31–52; criticism of past approaches, 31; current status, 1–2, 33–38, 171; debate over, in United Kingdom, 31–32; experiments with testable hypotheses, 9, 20–21, 86–87, 265; ex situ conservation, 27; improving practices in, 268; with individuals vs. seeds, 81; information sharing, 32, 49, 87, 136, 267–268, 271; intended vs. attempted, 33; intention of, 7; legal, ethical, and policy issues, 14, 271; measuring genetic diversity, 82–85t; population-level issues, 8; practitioner locations, 34; synthesis and future directions, 269–271. See also Traditional restoration work, implications for Reintroduction sites. See Recipient site assessment and selection
Reintroduction success: biological criteria, 7, 9; cited in literature, 189; criteria for, 189–208; evaluation metrics, 21–22; factors in, 19–20, 163–165, 177f, 183t; genetic analyses in evaluation of, 269–270; genetic variation in criteria for, 82–85t; global meta-analysis, 38–41; goals for and measurement of, 190–191; within historical range, 235; influencing factors, 117; number of donor populations and, 45–46; predicting, 17–18; propagule stages and, 178–179t; within vs. outside historic range boundaries, 46–47, 235. See also Long-lived plants, success criteria for reintroductions
Relative risk ratio, defined, 322
Reproductive biology of plant species: analyses, 199b, 206; attributes for reintroduced and natural populations of Acacia aprica, 194t; comparison of natural and reintroduced populations, 197–198; life history and variations in, 198; plant longevity in founder population and, 163–164; relationship between founder size and age of first reproduction, 165f; research areas of need and opportunity, 46; in success criteria for reintroductions of long-lived plants, 197–198; variation of, in assessing reintroduction success of long-lived species, 204–206
Reproductive success, 18b, 38, 43f, 185–186, 191–193
Research areas of need and opportunity: benchmarking for mating system and genetic variation, 206; coadapted species, experimental manipulations of, 128; comparative information on sister taxa or species with similar functional traits, 206; comparisons of natural and reintroduced populations, 206; ecological similarity of donor and reintroduction sites, 46; environmental factors limiting species’ range, 127–128; founder population size, 186–187; genetic considerations in rare plant reintroduction, 86–87; implications for traditional restoration work, 127–128; invasion biology, 256–258; isolation and genetic divergence of existing wild populations, 46; microbial combinations, 104; MR acceptability, 233–237; outbreeding depression, 86; protection mutualisms, 256–257; reintroduced population persistence, 187; relocating species outside historic range, 46–47; reproductive biology of species of concern, 46; SDM in strategic conservation decision-making, 148; seed collection guidelines, 86–87; seed founders, 187
soil microbes and transitioning plants to new environments, 104–105; success criteria for reintroductions of threatened long-lived plants, 206
Residence time, 249–250, 257t, 260
Resilience, 248, 322
Resistance, 245–248, 322
Restocking. See Augmentation 
Restoration, defined, 322
Restoration genetics, 71–72
Restoring Diversity (Falk et al.), 2
Reviewers for reintroduction plans, 285b
Rhizobacteria, plant growth-promoting (PGPR), 98, 102, 104
Rhizoctonia, 96
Rhus michauxii, 19, 193, 204
Risk analysis, 143–145, 281
Risk ratios (RR) and endemicity, in global meta-analysis of plant reintroductions, 43–47
ROC (receiver operating characteristic) analysis, 139
Root nodules, 97–98, 246
Roots and Shoots, Jane Goodall Institute, 61
Root systems, 89–93b
Rutidosis leptorrhynchoides, 192, 200
“Safe sites” for germination, 114
San Cristobal Biological Reserve, 63
Schiedea obovata, 212–213, 222
SDM (species distribution models), 131, 138–139, 148–149. See also Colorado Plateau study
Seed-based reintroductions, 39–40, 44, 79–81, 100, 115
Seed collection, 63, 74–75, 77, 86–87
Seed founders: age, 23; establishment of transplants compared to, 177f; generalizations for rare plant reintroductions, 175; germination and establishment rates of woody perennials, 180–182; indications for use, 180; plant longevity and reproductive value of, 163–164; PVA and number required for success, 162–163; in rare plant reintroductions, 19, 186; reintroductions with individuals compared to, 81; research needs, 187; sourcing, 201. See also Founder populations
Seedlings: acclimatization of orchid species in transfer from axenic cultures to soil, 104; artificial fertilizers in outplanting to novel habitat, 26; emergence in slug-treated and control plots, 222f; in founding new populations of rare plants, 175; heterogeneity in environmental conditions and survival, 115; introducing Frankia to Casuarina, 102; in vitro-grown, 93f; woody plant survival, 188
SER (Society for Ecological Restoration), iii, 322
Sesbania punicea, 256
Shoot tissue, 19
Shuttle Radar Topography Mission (SRTM), 135–136
Silene douglasii var. oraria, 22–23
Sluggo®, 223
Slugs, 221–222
Small population paradigm, 172–173
Society for Ecological Restoration (SER), iii, 322
Soil microbes, in transitioning plants to new environments: role in invasion ecology, 105
Soil microbes in transitioning plants to new environments, 89–108; acclimatization challenges and, 91–95; application methods, 90t, 99–103; beneficial fungi, 95–97; implications for traditional restoration work, 103–104; online resources, 106–107; plant growth-promoting rhizobacteria, 98–99; prospects and cautions for appropriate use of MR, 105–106; research needs, 104–105; root nodule-forming bacteria, 97–98
Soils, native, 100–103
Sophoro toromiro, 189
Source materials: choosing, 14, 269; CPC Best Reintroduction Practice Guidelines, 289–292; evaluation of guidelines for, 71–72; ex situ, 9. See also Propagule entries
Source populations: chromosome variation in, 200; in hypotheses and experimental results, 22–23; identification of, 76–77;
Source populations (continued)
  single vs. multiple, 19, 81, 88. See also Founder populations
Source-sink theory, 112
Spatial distribution hypothesis, 257t
Species biology, 47, 186–187, 286–287
Species distribution, 110–117, 132, 249–250, 257t. See also Dispersal of plant species
Species distribution models (SDMs), 113, 131, 148–149. See also Colorado Plateau study
Species recovery, 190
SRTM (Shuttle Radar Topography Mission), 135–136
Stability, defined, 322
Stabilization strategies, 210–213
Stabilization treatments, 15–16
State Botanical Garden of Georgia, 61
Stenogyne kanehoana, 223
Stephanomeria malheurensis, 14, 24–26, 185
Stochastic factors, and persistence of reintroduced populations, 172–173
Stock or nursery populations, 75–81
St. Thomas University, 92–93b
Success, 190–208, 265–266. See also Reintroduction success
Succession, and species distribution, 114
Succisa pratensis, 182
Survival of reintroduced plant populations: in global meta-analysis, 41–47; in global meta-analysis of threatened plant reintroductions, 42f; relevant theory, 172–174; timeframes of measurement, 201; variations across propagule stages for perennial herbs and woody plants, 180–181. See also Propagule survival
Symbiotic seed germination, 100
Temperate broadleaf forest biomes, 34
Tephrosia angustissima var. corallicola, 55, 56t, 125–126b
Terrestrial slugs, 221–223
Test plantings, in recipient site assessments, 121
Tetramolopium filiforme, 219
Tetraneuris herbacea, 78, 184
Thoreau, Henry David, 27
Threat assessment, 27–28, 38, 281
Threat control strategies, 219–223, 246
Tissue culture propagation, 91–92
Traditional restoration work, implications for: founder populations, 185–187; genetic considerations, 81–86; managed relocation (MR), 121–127; optimal locations for plant reintroductions, 117–121; public role in conservation of plant species, 68; research areas of need and opportunity, 127–128; species distribution modeling (SDM), 147–148; success criteria for reintroductions of long-lived plants, 204–206; use of soil microbes, 103–104
Transition stages in reintroduced vs. natural populations, 195
Translocations, 18, 23, 32, 233–234, 322
Transplant founders, 175–180, 186–188. See also Founder populations
Transplanting. See Outplanting
Trillium grandiflorum, 160t, 162–163, 166–168, 169t
Ungulate control, 220
Uniola paniculata, 103
US Army. See Oahu Army Natural Resource Rare Plant Program (OANRP)
USDA Plant Hardiness Zones, 28
USFWS (US Fish and Wildlife Service), 210, 322
USFWS Hawai’i and Pacific Plant Recovery Coordinating Committee, 210
Victorian Environment Friends Network, Australia, 63
Vital rate: defined, 322; in founder populations, 173; in meta-analysis of plant reintroductions, 267; in monitoring plans, 301t; and optimal microsite for reintroductions, 125–126b; PVA and, 156–159, 162–163, 167, 193–197; in success criteria for reintroductions, 191, 204. See also CPC Best Reintroduction Practice Guidelines
Volunteer and community outreach efforts, 53–69, 271. See also names of specific programs
Volunteer South America, 63–64
Water availability, outplantings and, 25
Weed risk assessment (WRA), 248–245, 251–256, 258, 260
Whole plant founders, 175, 187–188
Whole soil, native, 100–103
Wildfire, 224, 224f
Wildlands Restoration Volunteers, 63–64
Wild populations: augmentation of, 14, 22, 211, 271; comparing characteristics of reintroduced populations to, 191, 193–195, 199b; CPC Best Reintroduction Practice Guidelines, 288b; diversity of, and habitat invasibility, 248; isolation and genetic divergence of, 46; post-restoration analysis of reintroduced and, 80; survival over time compared to ex situ-derived propagules, 43–44
Woodland Watch/Healthy Ecosystems Project, Western Australia, 68
Woody perennials, 180–182, 188
Worldclim, 135
World Wildlife Fund Australia, 68
WRA (weed risk assessment), 248–245, 251–256, 258, 260
Xeric habitats, 181
Zieria prostrata, 78
Zizia aurea, 77
Zostera marina, 79

Ecological Restoration of Southwestern Ponderosa Pine Forests, edited by Peter Friederici, Ecological Restoration Institute at Northern Arizona University

Ex Situ Plant Conservation: Supporting Species Survival in the Wild, edited by Edward O. Guerrant Jr., Kayri Havens, and Mike Maunder

Great Basin Riparian Ecosystems: Ecology, Management, and Restoration, edited by Jeanne C. Chambers and Jerry R. Miller


The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands, edited by Stephen Packard and Cornelia F. Mutel


Foundations of Restoration Ecology, edited by Donald A. Falk, Margaret A. Palmer, and Joy B. Zedler

Restoring the Pacific Northwest: The Art and Science of Ecological Restoration in Cascadia, edited by Dean Apostol and Marcia Sinclair

A Guide for Desert and Dryland Restoration: New Hope for Arid Lands, by David A. Bainbridge

Old Fields: Dynamics and Restoration of Abandoned Farmland, edited by Viki A. Cramer and Richard J. Hobbs


River Futures: An Integrative Scientific Approach to River Repair, edited by Gary J. Brierley and Kirstie A. Fryirs

Large-Scale Ecosystem Restoration: Five Case Studies from the United States, edited by Mary Doyle and Cynthia A. Drew

New Models for Ecosystem Dynamics and Restoration, edited by Richard J. Hobbs, and Katharine N. Suding


Restoring Ecological Health to Your Land, by Steven I. Apfelbaum and Alan W. Haney

Restoring Disturbed Landscapes: Putting Principles into Practice, by David J. Tongway and John A. Ludwig

Intelligent Tinkering: Bridging the Gap between Science and Practice, by Robert J. Cabin


The Restoring Ecological Health to Your Land Workbook, by Steven I. Apfelbaum and Alan Haney
Island Press | Board of Directors

**Decker Anstrom (Chair)**
Board of Directors
Comcast Corporation

**Katie Dolan (Vice-Chair)**
Conservationist

**Pamela B. Murphy (Treasurer)**

**Carolyn Peachey (Secretary)**
President
Campbell, Peachey & Associates

**Stephen Badger**
Board Member
Mars, Inc.

**Merloyd Ludington Lawrence**
Merloyd Lawrence, Inc.
and Perseus Books

**Susan E. Sechler**
President
TransFarm Africa

**William H. Meadows**
President
The Wilderness Society

**Victor M. Sher, Esq.**
Principal
Sher Leff LLP

**Drummond Pike**
Founder
Tides

**Peter R. Stein**
General Partner
LTC Conservation Advisory
Services
The Lyme Timber Company

**Alexis G. Sant**
Managing Director
Persimmon Tree Capital

**Diana Wall, Ph.D.**
Director, School of Global
Environmental Sustainability
and Professor of Biology
Colorado State University

**Charles C. Savitt**
President
Island Press

**Wren Wirth**
President
Winslow Foundation